Study on IoT systems design

Description

Complex knowlage used to design and develope an analytical system for streams analysis
Jhayashree Sudha Ramakrishnan
Mind Map by Jhayashree Sudha Ramakrishnan, updated more than 1 year ago More Less
Tomasz Cieplak
Created by Tomasz Cieplak over 7 years ago
Jhayashree Sudha Ramakrishnan
Copied by Jhayashree Sudha Ramakrishnan over 7 years ago
14
0

Resource summary

Study on IoT systems design

Annotations:

  • Get prerequiments for the system design. 
  • Kurs: A developer's guide to Exploring and Visualizing IoT Datahttps://www.coursera.org/learn/exploring-visualizing-iot-data
  • Artykuł: IoT 101 – Everything You Need to Know to Start Your IoT Project http://www.datasciencecentral.com/profiles/blogs/iot-101-everything-you-need-to-know-to-start-your-iot-project
  • Koniecznie!!! https://github.com/onurakpolat/awesome-bigdata#data-visualization
  • IoT architecture on the edge http://www.iotcentral.io/blog/the-iot-architecture-at-the-edge?context=category-Platforms
  • Artykuły do projektu związanego z IoT http://www.datasciencecentral.com/profiles/blogs/16-great-iot-articles-published-in-2016
  1. Types of data analysis
    1. Real Time Analysis
      1. Stream Processing
        1. Apache Storm
          1. Apache Spark Streams

            Annotations:

            • Mastering Apache Spark 2 https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/
            1. Apache Samza
              1. MOA Framework

                Annotations:

                • http://moa.cms.waikato.ac.nz/
            2. Batch Analysis
              1. Apache Hadoop
            3. Database Systems
              1. DBMS

                Annotations:

                • Database management system
                1. Apache HBase
                  1. Apache CouchDB

                    Annotations:

                    • http://db-engines.com/en/system/Cloudant%3BCouchDB%3BCouchbase
                    1. IBM Cloudant NoSql
                      1. Couchbase
                    2. TSDB

                      Annotations:

                      • (Time Series DataBases)
                      1. OpenTSDB

                        Annotations:

                        • Data store using HBase
                        • Brain Monitoring with Kafka, OpenTSDB, and Grafana http://www.kdnuggets.com/2016/08/brain-monitoring-kafka-opentsb-grafana.html/2
                    3. File Systems
                      1. HDFS

                        Annotations:

                        • Hadoop File System
                      2. Messaging Queue Systems
                        1. Apache Kafka

                          Annotations:

                          • Kafka for beginners https://www.cloudkarafka.com/blog/2016-11-30-part1-kafka-for-beginners-what-is-apache-kafka.html
                          • Znaczenia Kafka dla IoT https://thenewstack.io/apache-kafka-cornerstone-iot-data-platform/
                        2. Programming Languages
                          1. R Lang
                            1. R Open

                              Annotations:

                              • Data visualisation with Shiny https://www.ibm.com/developerworks/community/files/basic/anonymous/api/library/1b6a2624-dc86-4856-b4ed-cdda6bfdecda/document/d26301ed-3155-4e21-ba3d-4936e0bd45cb/media
                              1. MS R Server

                                Annotations:

                                • Płatny
                                1. Data Science with R

                                  Annotations:

                                  • Dyplr tricks https://www.r-bloggers.com/lesser-known-dplyr-tricks/
                                  1. Data Import
                                    1. Amelia - uzupełnianie danych TS
                                      1. tidyr - porządkowanie danych
                                        1. readr - ułatwia import danych
                                          1. tibble - tab. struktura danych
                                      2. Python
                                        1. Interactive Parallel Computing in Python

                                          Annotations:

                                          • Interactive Parallel Computing in Python https://ipyparallel.readthedocs.io/ https://github.com/ipython/ipyparallel
                                          1. Clustering Alghoritms

                                            Annotations:

                                            • http://www.kdnuggets.com/2017/03/k-means-clustering-algorithms-intro-python.html?utm_content=buffer4b146&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer
                                            1. Biblioteki - Python
                                              1. EIT
                                                1. pyEIT

                                                  Annotations:

                                                  • https://github.com/liubenyuan/pyEIT
                                                  1. Calls Diagram

                                                    Annotations:

                                                    • C:\Anaconda3\Scripts>python pycallgraph graphviz -o main.png -- D:\tomas\Python\pyEIT\demo\demo_dynamic_greit.py
                                                    • http://pycallgraph.slowchop.com/en/master/guide/intro.html
                                                    • Get readoff of Windows error - http://delimitry.blogspot.com/2015/03/solving-problems-with-pycallgraph-under.html
                                                    1. Rpi.EIT

                                                      Annotations:

                                                      • https://github.com/agungdwiprasetyo/RPi.EIT-algorithms
                                                    2. Siatki - Mesh
                                                      1. MeshPy

                                                        Annotations:

                                                        • Site https://mathema.tician.de/software/meshpy/
                                                        1. Python Triangle

                                                          Annotations:

                                                          • Implementacja w Python biblioteki Trianle http://dzhelil.info/triangle/#
                                                          • Biblioteka Triangle: http://www.cs.cmu.edu/~quake/triangle.html
                                                          1. PyDistMesh

                                                            Annotations:

                                                            • https://pypi.python.org/pypi/PyDistMesh
                                                          2. Zagad. proste i odwrotne
                                                            1. pyGimli

                                                              Annotations:

                                                              • http://www.pygimli.org/index.html
                                                              • Anaconda install: https://anaconda.org/gimli/pygimli
                                                              1. Operator Discretization Library

                                                                Annotations:

                                                                • https://odlgroup.github.io/odl/getting_started/about_odl.html
                                                                1. Algorithmic Differentiation in Python

                                                                  Annotations:

                                                                  • http://pythonhosted.org/algopy/
                                                                  1. Linear Inverse Problem
                                                                    1. linvpy

                                                                      Annotations:

                                                                      • https://github.com/LCAV/linvpy
                                                                      1. pinvprob

                                                                        Annotations:

                                                                        • https://github.com/HajimeKawahara/pinvprob
                                                                        1. hIPPYlib

                                                                          Annotations:

                                                                          • https://hippylib.github.io/tutorials/2_PoissonDeterministic/
                                                                      2. Math Lib.
                                                                        1. Numpy

                                                                          Annotations:

                                                                          • Kurs Numpy http://www.python-course.eu/numpy.php
                                                                          1. SciPy

                                                                            Annotations:

                                                                            • Wykaz oprogramowania naukowego https://www.scipy.org/topical-software.html
                                                                            • SciPy dokumentacja https://www.scipy.org/scipylib/index.html
                                                                            1. Voronoi Diagrams

                                                                              Annotations:

                                                                              • http://zderadicka.eu/voronoi-diagrams/
                                                                              • http://www-astro.physics.ox.ac.uk/~mxc/software/
                                                                              • http://dzhelil.info/triangle/examples.html
                                                                          2. ERT
                                                                            1. BERT

                                                                              Annotations:

                                                                              • Repo https://gitlab.com/resistivity-net/bert/tree/master
                                                                              1. E4D

                                                                                Annotations:

                                                                                • https://e4d.pnnl.gov/Documents/E4D_User_Guide.pdf
                                                                              2. MISC
                                                                                1. TomograPy

                                                                                  Annotations:

                                                                                  • Strona projektu http://nbarbey.github.io/TomograPy/
                                                                                  • Artykuł: https://arxiv.org/pdf/1103.5904.pdf
                                                                                  1. Medical Data Manipulation

                                                                                    Annotations:

                                                                                    • https://idoimaging.com/programs?q%5Bdisplay_function%5D=&q%5Bfor_audience%5D=&q%5Bfunction%5D=&q%5Bheader_function%5D=&q%5Binterface%5D=&q%5Blanguage%5D=19&q%5Bname_cont%5D=&q%5Bnetwork_function%5D=&q%5Bother_function%5D=&q%5Bplatform%5D=&q%5Bprogramming_function%5D=&q%5Bread_format%5D=&q%5Bspeciality%5D=&q%5Bsummary_cont%5D=&q%5Bwrite_format%5D=
                                                                                  2. Data Flow
                                                                                    1. Apache AirFlow

                                                                                      Annotations:

                                                                                      • Tylko Linux http://airflow.incubator.apache.org/start.html
                                                                                  3. Intel Python

                                                                                    Annotations:

                                                                                    • Installation: https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
                                                                                  4. Scala

                                                                                    Annotations:

                                                                                    • Development and deployment of Spark applications with Scala, Eclipse, and sbt – Part 1: Installation & configuration http://www.nodalpoint.com/development-and-deployment-of-spark-applications-with-scala-eclipse-and-sbt-part-1-installation-configuration/
                                                                                    • Visualizing Big Data with Spark and Scala http://blog.ibmjstart.net/2016/07/18/visualizing-big-data-spark-scala/
                                                                                    1. SBT
                                                                                      1. Scala IDE

                                                                                        Annotations:

                                                                                        • http://scala-ide.org/download/sdk.html
                                                                                      2. Java
                                                                                        1. Flow Base Programming

                                                                                          Annotations:

                                                                                          • Used in IBM Streams, Apache NiFi
                                                                                          • http://www.jpaulmorrison.com/fbp/
                                                                                          • Apache Beam (Pyton SDK - https://github.com/apache/beam/tree/master/sdks/python#install-virtualenv) Google Cloud DataFlow - środowisko uruchomieniowe dla Apache Beamhttps://cloud.google.com/dataflow/  
                                                                                          • Opis modelu programistycznego https://beam.apache.org/documentation/programming-guide/   
                                                                                          1. Programmer IDE
                                                                                            1. Eclipse
                                                                                              1. Maven
                                                                                              2. Zeppelin Notebook

                                                                                                Annotations:

                                                                                                •  Zbiór przykładów analizy danych do Zeppelina https://github.com/hortonworks-gallery/zeppelin-notebooks   
                                                                                                1. Jupiter Notebook

                                                                                                  Annotations:

                                                                                                  • Data export to HTML https://blog.dominodatalab.com/lesser-known-ways-of-using-notebooks/
                                                                                                  • Visualisation PixieDust: Magic for Your Python Notebook https://developer.ibm.com/clouddataservices/2016/10/11/pixiedust-magic-for-python-notebook/
                                                                                                  1. R Studio
                                                                                                    1. Anaconda
                                                                                                  2. Implementation
                                                                                                    1. VM

                                                                                                      Annotations:

                                                                                                      • Virtualization
                                                                                                      1. Hyper-V
                                                                                                        1. Docker

                                                                                                          Annotations:

                                                                                                          • Wdrożenie Zeppelin https://github.com/dylanmei/docker-zeppelin
                                                                                                          • Wdrożenie Apache Spark https://github.com/gettyimages/docker-spark
                                                                                                          1. VMware
                                                                                                            1. VirtualBox
                                                                                                            2. Cloud Computing
                                                                                                              1. Azure HDInsight
                                                                                                                1. IBM Bluemix IoT

                                                                                                                  Annotations:

                                                                                                                  • Koniecznie!!! Spark Streaming + Watson IoT Platform Integration https://developer.ibm.com/recipes/tutorials/spark-streaming-ibm-watson-iot-platform-integration/
                                                                                                                  • Koniecznie: Engage Machine Learning for detecting anomalous behaviors of things https://developer.ibm.com/recipes/tutorials/engage-machine-learning-for-detecting-anomalous-behaviors-of-things/
                                                                                                                  • Koniecznie: Timeseries Data Analysis of IoT events by using Jupyter Notebook  https://developer.ibm.com/recipes/tutorials/timeseries-data-analysis-of-iot-events-by-using-jupyter-notebook/
                                                                                                                  • Koniecznie!!! Integrating Watson IoT Platform with Message Hub and Apache Spark  https://developer.ibm.com/recipes/tutorials/integrating-watson-iot-platform-with-message-hubkafka/
                                                                                                                  • Koniecznie!!! Integracja DB i Spark https://developer.ibm.com/clouddataservices/docs/ibm-data-science-experience/docs/
                                                                                                                  • Cleanse and visualize location data using Spark and Bluemix https://www.ibm.com/developerworks/library/ba-1610location-data-spark-bluemix-trs/index.html
                                                                                                                  • Apache Spark - using notebooks https://console.ng.bluemix.net/docs/services/AnalyticsforApacheSpark/index-gentopic3.html#genTopProcId4
                                                                                                                  • !!! SparkR notebook with Cloudant https://github.com/charles2588/bluemixsparknotebooks/blob/master/R/SparkR_Cloudant_Connection.ipynb
                                                                                                                  1. AWS
                                                                                                                    1. Databricks
                                                                                                                      1. Google Cloud Platform

                                                                                                                        Annotations:

                                                                                                                        • Real-Time Stream Processing for IoT: https://cloud.google.com/solutions/architecture/real-time-stream-processing-iot
                                                                                                                        • Cena na 1 Rok GPU in Google: https://cloud.google.com/products/calculator/#id=99152826-9096-43b2-a100-836c36ef4d50
                                                                                                                      2. Bare Metal
                                                                                                                      3. Integrated Platforms
                                                                                                                        1. Hortonworks
                                                                                                                          1. Data Platform
                                                                                                                            1. Data Flow
                                                                                                                            2. Cloudera

                                                                                                                              Annotations:

                                                                                                                              • Cloudera StreamSets https://vimeo.com/147671735
                                                                                                                              1. IBM Open Platform
                                                                                                                              2. Data Integration
                                                                                                                                1. Apache NiFi
                                                                                                                                2. Messaging Protocols
                                                                                                                                  1. MQTT

                                                                                                                                    Annotations:

                                                                                                                                    • !!! iot-device-samples https://github.com/ibm-messaging/iot-device-samples
                                                                                                                                  2. Programming Methods
                                                                                                                                    1. Img. Reconstr. Algorithms
                                                                                                                                      1. Tensor-based

                                                                                                                                        Annotations:

                                                                                                                                        • Artykuł: http://iopscience.iop.org/article/10.1088/1361-6501/aa58a3/meta
                                                                                                                                        1. Simulated Annealing Particle Swarm Optimization
                                                                                                                                          1. Landweber iterative method
                                                                                                                                            1. Linear back projection (LBP)
                                                                                                                                              1. Singular value decomposition

                                                                                                                                                Annotations:

                                                                                                                                                • Implementacja Python: https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html
                                                                                                                                                1. Conjugate Gradient method
                                                                                                                                                  1. Maximum Likelihood Estimation Method

                                                                                                                                                    Annotations:

                                                                                                                                                    • https://github.com/clarehchao/Spark3DImageReconstruction
                                                                                                                                                    1. Inverse problems

                                                                                                                                                      Annotations:

                                                                                                                                                      • Introduction to inverse problems (Spring 2014) http://cc.oulu.fi/~smaenpaa/inv_pk/inv_pk14_eng.pdf
                                                                                                                                                      1. Tikhonov regularization method

                                                                                                                                                        Annotations:

                                                                                                                                                        • Implementacja Python https://pypi.python.org/pypi/InverseProblem/1.0
                                                                                                                                                        1. Statistical and Computational InverseProblems

                                                                                                                                                          Annotations:

                                                                                                                                                          • https://www.researchgate.net/profile/Ian_Langmore/publication/268250507_Statistical_and_Computational_Inverse_Problems_and_a_little_uncertainty_quantification/links/5654822708aeafc2aabbd811/Statistical-and-Computational-Inverse-Problems-and-a-little-uncertainty-quantification.pdf?origin=publication_detail&ev=pub_int_prw_xdl&msrp=iG4X9V_68LOGbkxNrcZEP4Az6qj7tC0tBRcUQyjL8QYqQT4QoLmsF2FgkN6bhYKWGD5hIwTkn5ZA4aHZ8A8286ns9G-BWrYTAsuNSMv5CNk.bYd_LZtB1khHvYwW5OyIFeUTFjZCQqyRJayOmj_N5AXLMsdZGfQieOSGqKg4N2g4hxqe2aS8SGqs7RTj0lO2mw.wfseq3OvlHxPmYqbEhxOxL040D2b4044fCPINZ0nDdsCbRE9GxeAhwoYCzzzOf64AwlcmWuBBIbKFhDQjoECqQ.jNjix2pbRzy-BWR2vabpp4TbUNEHGKEiBIwCb6q11EYbYkRGdAy-ev4pUz1krhlO9uaouT9_yrSr7F-4hJheJQ
                                                                                                                                                          1. Lectures

                                                                                                                                                            Annotations:

                                                                                                                                                            • Lecture1: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture1 Lecture2: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture2 Lecture3&4: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture3 Lecture5: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture5
                                                                                                                                                        2. Machine Intelligence
                                                                                                                                                          1. Neural Networks
                                                                                                                                                            1. Machine Learning

                                                                                                                                                              Annotations:

                                                                                                                                                              • A Visual Introduction to Machine Learning http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
                                                                                                                                                              1. Apache Spark MLlib
                                                                                                                                                              2. Deep Learning

                                                                                                                                                                Annotations:

                                                                                                                                                                • Deeplearning4j on Spark https://deeplearning4j.org/
                                                                                                                                                                • TensorFlow http://www.tensorflow.org
                                                                                                                                                                • An Overview of Python Deep Learning Frameworks http://www.kdnuggets.com/2017/02/python-deep-learning-frameworks-overview.html
                                                                                                                                                                • TensorFlow on Sparkhttps://github.com/yahoo/TensorFlowOnSpark
                                                                                                                                                                1. Google TensorFlow

                                                                                                                                                                  Annotations:

                                                                                                                                                                  • Porównanie TensorFlow i CNTK https://esciencegroup.com/2016/02/08/tensorflow-meets-microsofts-cntk/
                                                                                                                                                                  1. TensorBoard: Visualizing Learning

                                                                                                                                                                    Annotations:

                                                                                                                                                                    • (C:\Anaconda3\envs\TensorFlow) C:\Users\tom\Documents>python -m tensorflow.tensorboard --logdir=./ localhost:6006
                                                                                                                                                                  2. Microsoft Cognitive Toolkit (CNTK)

                                                                                                                                                                    Annotations:

                                                                                                                                                                    • Strona projektu: https://www.microsoft.com/en-us/research/product/cognitive-toolkit/
                                                                                                                                                                    • Github: https://github.com/Microsoft/CNTK
                                                                                                                                                                    • Wiki: https://github.com/Microsoft/CNTK/wiki
                                                                                                                                                              3. Approaches to reconstruction acceleration

                                                                                                                                                                Annotations:

                                                                                                                                                                • Artykuł: Review of Parallel Computing Techniques for Computed Tomography Image Reconstruction http://www.imaging.sbes.vt.edu/BIDLib/CT/NiLiWang_ParaCompTech.pdf
                                                                                                                                                                • Rozprawa Doktorska dot. CT: http://ir.uiowa.edu/cgi/viewcontent.cgi?article=2330&context=etd
                                                                                                                                                                1. Parallel Computing
                                                                                                                                                                  1. Distribiuted Computing
                                                                                                                                                                    1. Apache Spark
                                                                                                                                                                      1. SparkR Desc.

                                                                                                                                                                        Annotations:

                                                                                                                                                                        • Opis biblioteki SparkR https://spark.apache.org/docs/2.1.0/api/R/index.html
                                                                                                                                                                        1. DataFrame
                                                                                                                                                                          1. Operations

                                                                                                                                                                            Annotations:

                                                                                                                                                                            • Operacje na obiekcie SparkDataFrame https://www.analyticsvidhya.com/blog/2016/10/spark-dataframe-and-operations/
                                                                                                                                                                      2. Local PC Clusters
                                                                                                                                                                      3. GPU

                                                                                                                                                                        Annotations:

                                                                                                                                                                        • Artykuł: P.Kapusta http://annals-csis.org/Volume_8/pliks/344.pdf
                                                                                                                                                                        1. Improved Algorithms
                                                                                                                                                                        2. Data Raporting
                                                                                                                                                                          1. Web App

                                                                                                                                                                            Annotations:

                                                                                                                                                                            • https://www.slideshare.net/BenLaird/real-time-data-viz-with-spark-streaming-kafka-and-d3js
                                                                                                                                                                            1. D3.js

                                                                                                                                                                              Annotations:

                                                                                                                                                                              • https://github.com/d3
                                                                                                                                                                              1. DC.js

                                                                                                                                                                                Annotations:

                                                                                                                                                                                • https://dc-js.github.io/dc.js/
                                                                                                                                                                              2. Socket.io

                                                                                                                                                                                Annotations:

                                                                                                                                                                                • https://github.com/socketio/socket.io
                                                                                                                                                                                1. R Shiny

                                                                                                                                                                                  Annotations:

                                                                                                                                                                                  • Tutorial: new ver. http://shiny.rstudio.com/tutorial/ old http://rstudio.github.io/shiny/tutorial/
                                                                                                                                                                                  1. Rickshaw TS graphs.

                                                                                                                                                                                    Annotations:

                                                                                                                                                                                    • Rickshaw is a JavaScript toolkit for creating interactive time series graphs. http://code.shutterstock.com/rickshaw/
                                                                                                                                                                                    1. RealTime Visualization IBM

                                                                                                                                                                                      Annotations:

                                                                                                                                                                                      • https://developer.ibm.com/recipes/tutorials/visualizing-your-data/
                                                                                                                                                                                2. Medical Data Analysis
                                                                                                                                                                                  1. MIRAN Project

                                                                                                                                                                                    Annotations:

                                                                                                                                                                                    • Projekt analizy danych medycznych za pomocą Python http://ne-scientific.com/miran/ http://ne-scientific.com/miran/
                                                                                                                                                                                  Show full summary Hide full summary

                                                                                                                                                                                  Similar

                                                                                                                                                                                  Study on IoT systems design
                                                                                                                                                                                  Nikola Tomoff
                                                                                                                                                                                  Python Quiz
                                                                                                                                                                                  karljmurphy
                                                                                                                                                                                  Think Python
                                                                                                                                                                                  tsilvo2001
                                                                                                                                                                                  Basic Python - Print Formatting
                                                                                                                                                                                  Rebecca Noel
                                                                                                                                                                                  What is Python?
                                                                                                                                                                                  Daniel Ingram
                                                                                                                                                                                  Python
                                                                                                                                                                                  54671
                                                                                                                                                                                  Docker
                                                                                                                                                                                  Dan Fletcher
                                                                                                                                                                                  Know your Python!
                                                                                                                                                                                  educ8ict
                                                                                                                                                                                  Basic Python - Strings
                                                                                                                                                                                  Rebecca Noel
                                                                                                                                                                                  Python
                                                                                                                                                                                  Kirstie Wu
                                                                                                                                                                                  OpenSource Programming
                                                                                                                                                                                  Faheem Ahmed