Meteorología aplicada a Incendios Rurales Público

Meteorología aplicada a Incendios Rurales

Deborah Ugaldes
Curso por Deborah Ugaldes, atualizado more than 1 year ago Colaboradores

Descrição

Las condiciones del tiempo constituyen el componente más variable del ambiente del fuego. Los factores meteorológicos pueden cambiar rápidamente debido a los cambios en las masas de aire, el ciclo diurno (noche y día) y efectos locales tales como la topografía. Además, las condiciones cambian en el espacio, motivo por el cual no experimentamos las mismas condiciones en diferentes partes del incendio.

Informações do módulo

Sem etiquetas
Sem etiquetas

Contexto

Los tres componentes del fuego en un momento dado.  De los tres componentes del ambiente del fuego, la meteorología es la más dinámica, ya que las comdiciones meteorológicas pueden variar de un momento a otro, alterando así el comportamiento del Fuego. Luego el estado de los combustibles. Es importante conocer acabadamente el estado de los combustibles para poder determinar el potencial del riesgo y la posible evolucion  de un incendio. Por último, la topografía es el componente más estable.
Mostrar menos
Sem etiquetas

Contexto

La tmósfera es la capa de gas (principalmente nitrógeno y oxígeno) que rodea la Tierra. En comparación con el diámetro aproximado de 12.000 km de la Tierra, la capa atmosférica es realmente muy delgada: cerca del 99 por ciento de todo el gas atmosférico está concentrado en los primeros 30kilómetros desde la superficie terrestre.atmósfera es la capa de gas (principalmente nitrógeno y oxígeno) que rodea la Tierra. En comparación con el diámetro aproximado de 12.000 km de la Tierra, la capa atmosférica es realmente muy delgada: cerca del 99 por ciento de todo el gas atmosférico está concentrado en los primeros 30kilómetros desde la superficie terrestre.
Mostrar menos
Sem etiquetas

Contexto

La atmósfera se estructura en capas definidas por los cambios de temperatura que se producen con la altitud. En orden ascendente, estas capas son la troposfera, estratosfera, mesosfera y termosfera. La tropopausa marca el límite entre la troposfera y la estratosfera, mientras la estratopausa separa la estratosfera de la mesosfera. El límite entre la mesosfera y termosfera se conoce como mesopausa.
Mostrar menos
Sem etiquetas

Contexto

La temperatura tiende a disminuir con la altura a través de la troposfera, que es la capa donde se manifiestan los procesos meteorológicos. La troposfera se extiende desde la superficie hasta un nivel entre 9 y 18 km sobre el nivel del mar. La tropopausa marca la parte superior de la troposfera y la separa de la estratosfera. La altura de la tropopausa tiende a ser mayor sobre los trópicos y menor sobre las regiones polares. La tropopausa marca la posición de los intensos vientos conocidos como corriente en chorro que serpentean en estrechas bandas a través de los hemisferios norte y sur con una trayectoria de oeste a este. La tropopausa representa además el límite superior de prácticamente todas las manifestaciones meteorológicas de la atmósfera.
Mostrar menos
Sem etiquetas

Contexto

La troposfera contiene casi el 75% de la masa gaseosa de la atmósfera. El nitrógeno constituye el 78 % del volumen total de gas seco, y el oxígeno otro 21%. El 1 % restante del volumen lo forman el argón, el neón, el helio, el hidrógeno, el xenón y el dióxido de carbono. Este último, cuyas propiedades de efecto invernadero son importantes, representa sólo una fracción del uno por ciento de los gases que componen la atmósfera terrestre.
Mostrar menos
Sem etiquetas

Contexto

La atmósfera contiene además vapor de agua, un componente de enorme importancia que contribuye a la formación de las nubes de agua y de hielo que generan los distintos tipos de precipitación. El vapor de agua también almacena y libera grandes cantidades de energía térmica denominada calor latente que constituye la fuente de energía que estimula el desarrollo de tormentas y huracanes.
Mostrar menos
Sem etiquetas

Contexto

Casi la mitad de todo el vapor de agua de la atmósfera se halla en los 5 km inferiores de la atmósfera y dentro de esa zona su concentración varía de acuerdo con factores tales como la región, la altitud y la estación del año.
Mostrar menos
Sem etiquetas
Sem etiquetas

Contexto

La luz del sol es la radiación que la Tierra recibe desde el Sol. La radiación solar viaja hacia la Tierra a la velocidad de la luz, atravesando 150.000.000.000 km en sólo 8 segundos.
Mostrar menos
Sem etiquetas

Contexto

Ésta energía deja la atmósfera terrestre en la misma tasa que ingresa.  A esto se le llama Balance Global de Energía. Sin este balance, la Tierra podría calentarse o enfriarse, pero la energía de la Tierra se mantiene constante.
Mostrar menos
Sem etiquetas
Sem etiquetas

Contexto

Que hace la energía del Sol en la Tierra, antes de escapar nuevamente de la atmósfera? Es el combustible de practicamente todo: entrega toda la energía a los seres vivos, mueve corrientes oceánicas y mueve la atmósfera.
Mostrar menos
Sem etiquetas

Contexto

La radiación solar puede ser absorbida o reflejada. La energía reflejada vuelve al espacio, mientras que la energía absorbida se oculta temporalmente en el movimiento de los átomos y moléculas.
Mostrar menos
Sem etiquetas

Contexto

Eventualmente la radiación absorvida por los átomos y las moléculas será liberada. Esto debe suceder si el 100% de la energía entrante también sale de vuelta. Sin embargo, la energía puede ser transformada. Por ejemplo, la luz visible absorvida puede ser emitida como radiación infraroja.
Mostrar menos
Sem etiquetas

Contexto

Como todos los materiales que absorven radiación, los átomos y moléculas de la atmósfera también emiten energía.
Mostrar menos
Sem etiquetas

Contexto

En el conjunto de la Tierra se produce un efecto natural similar de retención del calor gracias a algunos gases atmosféricos. La temperatura media en la Tierra es de unos 15º C y si la atmósfera no existiera sería de unos -18º C.
Mostrar menos
Sem etiquetas

Contexto

Un modelo simple más realista de circulación global explica como debe mantenerse el balance de calor producido por el calentamiento diferencial ecuador - polo, considerando que la Tierra está en rotación. Es un modelo idealizado en el que se distinguen tres celdas de circulación vertical por hemisferio y los vientos resultantes en superficie, como se describe a continuación.
Mostrar menos
Sem etiquetas

Contexto

Celda de Hadley, Ferrel y Polar
Mostrar menos
Sem etiquetas

Contexto

El cambio de presión con la altitud, Δp, se expresa mediante la ecuación hidrostática: Δp = - g · ρ · Δz
Mostrar menos
Sem etiquetas

Contexto

el aire tiende a ascender o descender debido a los gradientes de temperatura producidos por la radiación solar, que al calentar la superficie marina o terrestre transfiere energía hacia la atmósfera, y la presión atmosférica, que al descender con la altitud produce que el aire se expanda y enfríe.
Mostrar menos
Sem etiquetas

Contexto

Si en una zona de la atmósfera la temperatura aumenta con la altura, una parcela de aire que asciende no podrá expandirse, puesto que al ascender se encuentra con un entorno más caliente y tenderá a volver a su lugar original. Si por el contrario la parcela de aire desciende, se encontrará con un entorno más frío obligándola también a regresar a su posición original. A este estado de la atmósfera se le llama estabilidad. Esta capa es muy sensible a cambios en la superficie del terreno, su estratificación dificulta los intercambios turbulentos.
Mostrar menos
Sem etiquetas

Contexto

Inversión térmica: Como ya sabemos, la temperatura de las capas superiores de la atmósfera tiende a ser más baja que la de las capas inferiores. A veces, sin embargo, la temperatura de una capa de aire estable aumenta con la altitud. En meteorología, este fenómeno se conoce como una inversión térmica o de temperatura. El efecto de una inversión es parecido al de una tapa que limita fuertemente el movimiento ascendente del aire.
Mostrar menos
Sem etiquetas

Contexto

A medida que el aire se eleva, el aire más frío se mueve por debajo. La superficie terrestre puede hacer que se caliente y empiece a elevarse nuevamente. Bajo estas condiciones, la circulación vertical en ambas direcciones aumenta y se produce una mezcla vertical considerable. El grado de inestabilidad depende de la importancia de las diferencias entre los gradientes verticales ambientales y los adiabáticos secos.
Mostrar menos