Criado por Freddy Ulate Agüero
quase 10 anos atrás
|
||
Questão | Responda |
A es SUBCONJUNTO de B | \[ A\subseteq B \Leftrightarrow \forall x [x \in A \rightarrow x \in B] \] |
A es IGUAL a B | \[ A = B \Leftrightarrow [A \subseteq B \wedge B \subseteq A] \] |
A es SUBCONUNTO PROPIO de B | \[ A \subset B \Leftrightarrow [A \subseteq B \wedge A \neq B] \] |
UNIÓN | \[ A \cup B = \{ x / x \in A \vee x \in B \} \] |
INTERSECCIÓN | \[ A \cap B = \{ x / x \in A \wedge x \in B \} \] |
DIFERENCIA | \[ A - B = \{ x / x \in A \wedge x \notin B \} \] |
DIFERENCIA SIMÉTRICA | \[ A \vartriangle B = (A - B) \cup (B - A) \] |
COMPLEMENTO | \[ \overline{A} = U - A \] |
CONJUNTO POTENCIA (CONJUNTO DE PARTES) | \[ P(A) = \{S / S \subseteq A \} \] |
PRODUCTO CARTESIANO | \[ A \times B = \{ (a,b) / a \in A \wedge b \in B \} \] |
CONJUNTOS DISJUNTOS | \[ A \cap B = \varnothing \] |
A es un CONJUNTO | \[ A = \{ x / x \in U \wedge P(x) \} \\ = \{ x \in U / P(x) \} \] |
Quer criar seus próprios Flashcards gratuitos com GoConqr? Saiba mais.