Criado por laura.kinnel
mais de 9 anos atrás
|
||
Questão | Responda |
\[\sin\dfrac{\pi}{6}\] | \[\dfrac{1}{2}\] |
\[\sin 0\] | \[0\] |
\[\sin \pi\] | \[0\] |
\[\sin 2\pi\] | \[0\] |
\[\sin\frac{\pi}{6}\] | \[\frac{1}{2}\] |
\[\sin\frac{5\pi}{6}\] | \[\frac{1}{2}\] |
\[\sin\frac{7\pi}{6}\] | \[-\frac{1}{2}\] |
\[\sin\frac{11\pi}{6}\] | \[-\frac{1}{2}\] |
\[\sin\frac{\pi}{4}\] | \[\frac{\sqrt{2}}{2}\] |
\[\sin\frac{3\pi}{4}\] | \[\frac{\sqrt{2}}{2}\] |
\[\sin\frac{5\pi}{4}\] | \[-\frac{\sqrt{2}}{2}\] |
\[\sin\frac{7\pi}{4}\] | \[-\frac{\sqrt{2}}{2}\] |
\[\sin\frac{\pi}{3}\] | \[\frac{\sqrt{3}}{2}\] |
\[\sin\frac{2\pi}{3}\] | \[\frac{\sqrt{3}}{2}\] |
\[\sin\frac{4\pi}{3}\] | \[-\frac{\sqrt{3}}{2}\] |
\[\sin\frac{5\pi}{3}\] | \[-\frac{\sqrt{3}}{2}\] |
\[\sin\frac{\pi}{2}\] | \[1\] |
\[\sin\frac{3\pi}{2}\] | \[-1\] |
\[\cos 0\] | \[1\] |
\[\cos \pi\] | \[-1\] |
\[\cos 2\pi\] | \[1\] |
\[\cos\frac{\pi}{6}\] | \[\frac{\sqrt{3}}{2}\] |
\[\cos\frac{5\pi}{6}\] | \[-\frac{\sqrt{3}}{2}\] |
\[\cos\frac{7\pi}{6}\] | \[-\frac{\sqrt{3}}{2}\] |
\[\cos\frac{11\pi}{6}\] | \[\frac{\sqrt{3}}{2}\] |
\[\cos\frac{\pi}{4}\] | \[\frac{\sqrt{2}}{2}\] |
\[\cos\frac{3\pi}{4}\] | \[-\frac{\sqrt{2}}{2}\] |
\[\cos\frac{5\pi}{4}\] | \[-\frac{\sqrt{2}}{2}\] |
\[\cos\frac{7\pi}{4}\] | \[\frac{\sqrt{2}}{2}\] |
\[\cos\frac{\pi}{3}\] | \[\frac{1}{2}\] |
\[\cos\frac{2\pi}{3}\] | \[-\frac{1}{2}\] |
\[\cos\frac{4\pi}{3}\] | \[-\frac{1}{2}\] |
\[\cos\frac{5\pi}{3}\] | \[\frac{1}{2}\] |
\[\cos\frac{\pi}{2}\] | \[0\] |
\[\cos\frac{3\pi}{2}\] | \[0\] |
Quer criar seus próprios Flashcards gratuitos com GoConqr? Saiba mais.