Questão | Responda |
Que es la bioestadística | La bioestadística es la rama de la estadística aplicada a la biología y a las ciencias de la salud. |
Cual es el objetivo de la bioestadística | Su objetivo es el análisis y la interpretación de datos obtenidos de experimentos o estudios en campos como la medicina, la biología, la salud pública, la epidemiología y otras disciplinas relacionadas. |
Cuales son los dos tipos de estadisticas | 1. Estadística descriptiva. Se refiere a los métodos utilizados para organizar y resumir los datos de manera clara. 2. Estadística Inferencial. Se ocupa de hacer predicciones o inferencias sobre una población basada en una muestra representativa de los datos |
Que métodos incluye la estadística descriptica | Tablas y gráficos: histogramas, gráficos de barras, gráficos circulares, diagramas de caja y bigote, etc. Medidas de tendencia central: Media: el promedio de los datos. Mediana: el valor central de un conjunto de datos ordenados. Moda: el valor más frecuente. Medidas de dispersión: Rango: diferencia entre el valor máximo y mínimo. Varianza: la medida de cuánto varían los datos en relación con la media. Desviación estándar: la raíz cuadrada de la varianza. Percentiles: los puntos que dividen los datos en partes iguales. |
Que métodos incluye la estadística inferencial | Estimación: se usan intervalos de confianza para estimar parámetros poblacionales (como la media o proporción). Pruebas de hipótesis: se utilizan para verificar suposiciones sobre una población mediante la comparación de muestras. errores en prueba de hipótesis: Permiten verificar una afirmación o suposición sobre un parámetro poblacional. Se trabaja con dos hipótesis Hipótesis nula (H₀): afirma que no hay efecto o diferencia. Hipótesis alternativa (H₁): sugiere que sí hay un efecto o diferencia. Errores tipo I y II: Error tipo I (α): rechazar una hipótesis nula verdadera. Error tipo II (β): no rechazar una hipótesis nula falsa. |
Tipos de datos | 1.Datos Cuantitativos: Discretos: números enteros, como el número de hijos. Continuos: pueden tomar cualquier valor dentro de un rango, como el peso o la altura. 2.Datos Cualitativos: Nominales: categorías sin orden (por ejemplo, género, color de ojos). Ordinales: categorías con un orden específico (por ejemplo, nivel educativo, calificaciones: malo, regular, bueno). |
las distribuciones de Probabilidad | describen cómo se distribuyen los valores de una variable aleatoria |
Distribuciones de probabilidad mas comunes | 1.Distribución normal: la famosa "curva en forma de campana" simétrica que describe muchas variables naturales (por ejemplo, altura, peso). 2.Distribución binomial: describe el número de éxitos en una secuencia de experimentos de prueba de Bernoulli (por ejemplo, lanzar una moneda). 3.Distribución de Poisson: se utiliza para modelar el número de veces que ocurre un evento en un intervalo de tiempo o espacio (por ejemplo, número de llamadas en una central telefónica por minuto). |
Las Pruebas Estadísticas | Se utilizan para tomar decisiones basadas en datos |
Ejemplos de Pruebas estadísticas | Prueba t de Student: para comparar las medias de dos grupos. Análisis de varianza (ANOVA): para comparar las medias de más de dos grupos. Prueba chi-cuadrado: para evaluar si existe una relación entre dos variables categóricas. Regresión: para analizar la relación entre una variable dependiente y una o más variables independientes. |
Estadística y Probabilidad | La probabilidad es fundamental para la estadística INFERENCIAL, ya que permite modelar la incertidumbre y hacer predicciones |
con que conceptos se trabaja la probabilidad | Eventos independientes: la ocurrencia de un evento no afecta la ocurrencia de otro. Probabilidad condicional: la probabilidad de que un evento ocurra dado que otro evento ha ocurrido. |
Aplicaciones de la estadistica | Ciencias sociales: análisis de encuestas, estudios demográficos. Medicina: ensayos clínicos, estudios epidemiológicos. Negocios y economía: análisis de mercado, pronósticos financieros. Ingeniería: control de calidad, análisis de fiabilidad. |
Pruebas paramétricas (Para variables métricas) | Las pruebas paramétricas son aquellas que se utilizan cuando los datos siguen ciertas suposiciones o condiciones, como que la variable sigue una distribución normal y los datos son métricos (intervalo o razón) |
Pruebas paramétricas comunes | 1.Prueba t Student 2.ANOVA (Análisis de Varianza) 3.Prueba z 4.Correlación de Pearson 5.Regresión lineal 6.Prueba F |
Pruebas no paramétricas (Para variables no métricas o que no cumplen supuestos) | Se usan para datos ordinales o categóricos, o cuando los datos no cumplen con los supuestos de las pruebas paramétricas (como normalidad o igualdad de varianzas). |
Pruebas no paramétricas comunes | 1.Prueba de Mann-Whitney U 2.Prueba de Wilcoxon para muestras relacionadas 3.Prueba de Kruskal-Wallis 4.Prueba de Friedman 5.Prueba de Chi-cuadrado 6.Correlación de Spearman 7.Prueba de Kolmogorov-Smirnov 8.Prueba de signos |
Las escalas de medición de las variables | son fundamentales en estadística para determinar qué tipo de análisis es apropiado para los datos |
4 escalas de la medición de variables | 1. Escala Nominal. Cualitativa 2. Escala Ordinal. Cualitativa 3. Escala de Intervalo. Cuantitativa 4. Escala de Razón. Cuantitativa |
El muestreo | es el proceso mediante el cual se selecciona un subconjunto de individuos o elementos de una población con el fin de obtener información y realizar inferencias sobre la población completa |
Tipos de muestreo | 1. Muestreo Probabilístico. todos los elementos de la población tienen una probabilidad conocida y no nula de ser seleccionados para formar parte de la muestra 2.Muestreo no probabilístico. se utiliza cuando no es posible o no es necesario que todos los miembros de la población tengan la misma probabilidad de ser seleccionados. |
Quer criar seus próprios Flashcards gratuitos com GoConqr? Saiba mais.