Topology, Lecture 1

Descrição

FlashCards sobre Topology, Lecture 1, criado por Jörg Schwartz em 17-01-2016.
Jörg Schwartz
FlashCards por Jörg Schwartz, atualizado more than 1 year ago
Jörg Schwartz
Criado por Jörg Schwartz quase 9 anos atrás
10
0

Resumo de Recurso

Questão Responda
Define a \[\textit{base}\] for a topology on a set \(X\) A \(\textit{base}\) is a collection \(\mathcal{B}\subseteq X\), such that: \[\forall x\in X\; \exists B\in \mathcal{B}\colon x\in B,\]\[\forall B_1, B_2\in \mathcal{B} \text{ and } x\in B_1\cap B_2\colon \exists B_3\in B_1\cap B_2 \text{ with } x\in B_3\]
Given a sequence of points in a topological space \(X\), define \[\textit{convergence to the point } x\in X\] \((x_n)_{n\geq 1}\) converges to \(x\in X\) if \[\forall U\in \mathcal{T}\text{ with } x\in U \;\exists N\;\forall N\geq n\colon x_n\in U\]
Given two topologies \(\mathcal{T}_1,\mathcal{T}_2\), define \[\textit{coarser/finer}\] If \(\mathcal{T}_1\subseteq\mathcal{T}_2\), then \[\mathcal{T}_1 \text{ is coarser then }\mathcal{T}_2,\]\[\mathcal{T}_2 \text{ is finer then }\mathcal{T}_1\]
Give a definition of a topology on a set \(X\) in terms of open sets. Define \(\textit{topological space}\) A topology on a set \(X\) is a collection \(\mathcal{T}\) of open subsets of \(X\), such that finite intersection of open sets and infinte unions of open sets are again open. The pair \((X, \mathcal{T})\) is called a \(\textit{topological space}\)
Define a \(\textit{metric}\) (distance function) on a set \(X\) A metric is a function \[d\colon X\times X\rightarrow \Re_{\geq 0}\] such that for all \(x,y,z\in X\): \[d(x,y) = 0\Leftrightarrow x = y\]\[d(x,y) = d(y,x)\]\[d(x,y) + d(y,z)\geq d(x,z)\]

Semelhante

The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Graph Theory
Will Rickard
Projectiles
Alex Burden
AS Pure Core 1 Maths (AQA)
jamesmikecampbell
Preparing for ACT Math section
Don Ferris
Mathematics Overview
PatrickNoonan
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary