EN L3 Flashcards

Descrição

This set of problems will allow you to practice applying the Power to a Power Exponent Property along with the Negative Exponent Property, and the Quotient Property.
Math I Get it
FlashCards por Math I Get it, atualizado more than 1 year ago
Math I Get it
Criado por Math I Get it mais de 8 anos atrás
66
0

Resumo de Recurso

Questão Responda
Simplify. \[(x^7)^4\] \[x^{28}\]
Simplify. \[(y^{10})^2\] \[y^{20}\]
Simplify. \[(2y^6)^4\] \[2^4y^{24}\]=\[16y^{24}\]
Simplify. \[(3x^7)^2\] \[3^2x^{14}\]=\[9x^{14}\]
Simplify. \[(-3x^5)^4\] \[(-3)^4x^{20}\]=\[81x^{20}\]
Simplify. \[(-3x^3)^3\] \[(-3)^3x^{9}\]=\[-27x^{9}\]
Simplify. \[(7x^{10}y^5)^2\] \[(7)^2x^{20}y^{10}\]=\[49x^{20}y^{10}\]
Simplify. \[(4x^{3}y^2)^3\] \[(4)^3x^{9}y^{6}\]=\[64x^{9}y^{6}\]
Simplify. \[(-3x^{7})^3\] \[(-3)^3x^{21}\]=\[-27x^{21}\]
Simplify. \[(-3x^{5})^4\] \[(-3)^4x^{20}\]=\[81x^{20}\]
Simplify. \[\frac{a^{42}}{c^{60}}\]
Simplify. \[\frac{c^{24}}{a^{6}}\]
Simplify. \[(a^{-5})^{-3}\]=\[a^{15}\]
Simplify. \[(c^{-8})^{-4}\]=\[c^{32}\]
Simplify. \[(a^{-7})^{3}\]=\[a^{-21}\]=\[\frac{1}{a^{21}}\]
Simplify. \[(c^{-3})^{6}\]=\[c^{-18}\]=\[\frac{1}{c^{18}}\]
Simplify. \[(a^7)^{-4}\] \[x^{-28}\]=\[\frac{1}{x^{28}}\]
Simplify. \[(c^{10})^{-5}\] \[x^{-50}\]=\[\frac{1}{x^{50}}\]
Simplify. \[(a^{-7}c^5)^{-2}\] \[a^{14}c^{-10}\]=\[\frac{a^{14}}{c^{10}}\]
Simplify. \[(a^{4}c^{-3})^{-8}\] \[a^{-32}c^{24}\]=\[\frac{c^{24}}{a^{32}}\]

Semelhante

The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Graph Theory
Will Rickard
Projectiles
Alex Burden
EN L4 FC
Math I Get it
EN L2 Quiz
Math I Get it
EN L2 FlashCards
Math I Get it
Mathematics Overview
PatrickNoonan