Máquinas de Soporte Vectorial

Descrição

Ordenadores/Informática Mapa Mental sobre Máquinas de Soporte Vectorial, criado por Juan Carlos Moreno em 22-09-2017.
Juan Carlos Moreno
Mapa Mental por Juan Carlos Moreno, atualizado more than 1 year ago
Juan Carlos Moreno
Criado por Juan Carlos Moreno mais de 7 anos atrás
29
0

Resumo de Recurso

Máquinas de Soporte Vectorial
  1. ¿Qué es?
    1. Algoritmo de red de aprendizaje maquina tipo feedfoward. Utiliza técnicas de mapeo de características a dimensiones mayores con la finalidad de separar linealmente un conjunto previamente inseparable.
      1. Usualmente aplicado en:
        1. Clasificación
          1. Análisis de datos estadísticos
            1. Reconocimiento de voz y escritura
              1. Clasificación de texto
                1. Clasificación de proteinas
                2. Regresión
                  1. Tendencias financieras
                    1. Diseño de fármacos
                  2. Dado un conjunto de entrenamiento, construye un hiperplano como superficie de decisión, de tal manera que el margen de separación entre los conjuntos sea maximizado.
                    1. No son consideras redes neuronales, debido a que no modelan comportamientos biológicos, en cambio son clasificados como algoritmos de aprendizaje maquina.
                  3. Orígenes
                    1. Corinna Cortes y Vladimir Vapnik en 1995 propusieron las redes de soporte vectorial para la clasificación de problemas de grupos binarios, incluyendo aquellos que no cuentan con una separación lineal.
                    2. Principales capacidades
                      1. Beneficios
                        1. Permite la existencia de Outliers, o eventos aislados atípicos.
                          1. Son efectivas en espacios n-dimensional.
                            1. Utiliza como conjuntos de entrenamiento puntos en la función de decisión (llamados Vectores de Soporte), lo que lo hace eficiente en memoria.
                              1. Es eficiente aun contando con pocos elementos para realizar su entrenamiento, a diferencia de las redes neuronales.
                              2. Desventajas
                                1. Bajo desempeño en comparación a otras técnicas (K-means, recursive least-squares) en presencia de conjuntos de datos grandes.
                                  1. No es recomendado su uso en presencia de conjuntos con alto traslape de datos y ruido.
                                2. ¿Qué variantes hay?
                                  1. Máquina de soporte vectorial de agrupación
                                    1. Usado comúnmente en aplicaciones industriales donde los datos no se encuentran completamente etiquetados.
                                    2. Máquinas de soporte vectorial multiclase
                                      1. Permite la separación de mas de dos conjuntos.
                                    3. ¿Qué algoritmo de aprendizaje usa?
                                      1. Los Kernels son los métodos de generación de la superficie de decisión
                                        1. Incrementa la dimensionalidad de los conjuntos involucrados hasta contar con una superficie que pueda separar las clases de manera lineal para después regresar a su dimensión original.
                                          1. Producto punto
                                            1. Kernel Sigmoidal
                                              1. Kernel de la función radial-basis
                                                1. Kernel polinomíal
                                                  1. Kernel doble capa perceptron.
                                              2. Implementación
                                                1. Hardware
                                                  1. VLSI y FPGA
                                                    1. Alta especificidad y bajo consumo de energía
                                                    2. GPU
                                                      1. Aceleración de procesamiento para grandes volumenes de kernels
                                                      2. CPU
                                                      3. Software
                                                        1. Scikit/Python
                                                          1. Matlab
                                                            1. R
                                                              1. Tensorflow

                                                            Semelhante

                                                            Gramática - Visão Geral - Fonologia
                                                            tiago meira de almeida
                                                            Psicologia da Educação
                                                            rsgomes88
                                                            Direito Penal - Parte Geral
                                                            Mafalda de Quino
                                                            Tecnologia na Sala de aula
                                                            Alessandra S.
                                                            Guia de Estudos para o ENEM
                                                            GoConqr suporte .
                                                            Ecologia I
                                                            kyungsos
                                                            Química Orgânica (Part. I)
                                                            lorena dorea
                                                            Anatomia: sistema esquelético I
                                                            Natália Abitbol
                                                            Matemática 9º ano
                                                            Carlos Itapecuru
                                                            O que você pode fazer com GoConqr
                                                            GoConqr suporte .
                                                            Cinemática
                                                            Hugo Fonseca