null
US
Entrar
Registre-se gratuitamente
Registre-se
Detectamos que o JavaScript não está habilitado no teu navegador. Habilite o Javascript para o funcionamento correto do nosso site. Por favor, leia os
Termos e Condições
para mais informações.
Próximo
Copiar e Editar
Você deve estar logado para concluir esta ação!
Inscreva-se gratuitamente
1107572
Multiples, Factors & Primes
Descrição
Explanation of multiples, factors & primes
Sem etiquetas
multples
factors
primes
numbers
whole
positive
maths
bsc (honours) mathematics
Mapa Mental por
Sarah Owen
, atualizado more than 1 year ago
Mais
Menos
Criado por
Sarah Owen
mais de 10 anos atrás
460
6
1
Resumo de Recurso
Multiples, Factors & Primes
A prime number is a number greater than 1 which has only two factors: Itself & 1.
Prime numbers to 100: 2,3,5,7,11,13,17,19, 23,29,31,37,41,43,47, 53,59,61,67,71,73,79, 83,89,97
The sum of two prime numbers can be a prime number but only when one of the prime numbers is 2
2+3=5 2+5=7 2+11=13
A number written as the product of prime numbers is written in prime factor form
720 = 2 x 2 x 2 x 2 x 3 x 3 x 5 as prime factor form is 720 = 2(4) x 3(2) x 5 (brackets are to the power of)
2, 3, and 5 are prime factors of 720
Multiples of a number are the results of multiplying the number by a positive whole number.
15=3x5 308=4x7x11
15 is a multiple of 3 & also of 5
3 is a factor of 15. 5 is also a factor
308 is a multiple of 4, 7 & 11
4, 7 & 11 are factors of 308
The factors of a number are whole numbers that divide exactly into the number. The factor includes 1 & itself.
Quer criar seus próprios
Mapas Mentais
gratuitos
com a GoConqr?
Saiba mais
.
Semelhante
Maths GCSE - What to revise!
livvy_hurrell
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell
Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
GCSE Maths: Geometry & Measures
Andrea Leyden
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan
New GCSE Maths
Sarah Egan
Explore a Biblioteca