Probability Theory

Descrição

V1
Lewis Warne
Mapa Mental por Lewis Warne, atualizado more than 1 year ago
Lewis Warne
Criado por Lewis Warne mais de 6 anos atrás
92
1

Resumo de Recurso

Probability Theory
  1. Probability Space

    Anotações:

    • ( \(\Omega\) , \(\mathcal{F}\) , P )
    1. Sigma-Field F

      Anotações:

      • \(\sigma\) - field
      1. 3 properties
        1. closed under compliments

          Anotações:

          • \( if A \in \mathcal{F} \) then  \(A^c \in \mathcal{F} \)
          1. closed under unions
            1. Contains Null

              Anotações:

              •  \( \emptyset  \in \mathcal{F}  \) 
          2. Probability Set

            Anotações:

            • \(\Omega\)
            1. set of all possible outcomes
            2. Probability Measure

              Anotações:

              • P on ( \(\Omega\) , \(\mathcal{F}\) )
              1. two properties
                1. Between zero and one

                  Anotações:

                  • P(null set) = 0, P(solution set) = 1
                  1. Identity
                    1. if An is collection of disjoint members of F, sum of proabability is sum of untion
                      1. Given Disjoint events, Sum of probability of each events = Probability of Union
                  2. 4 Properties, Basic Prob Math works
                    1. Prob of compliments add up to 1

                      Anotações:

                      • \( P(A^c) = 1 - P(A) \)
                      1. If B is super set of A then P(B) = P(A) + P( B\A) >= P(A)
                        1. P( A U B) = P(A) + P(B) - P( A intersect B)
                          1. Complex union math, proof by induction
                        2. Conditional Probability
                          1. Based on total number of events

                            Anotações:

                            • \( \frac{N(A \cap B}{N(B)} \)
                            1. P(A given B) = P(A intersection B) / P(B)
                              1. Lemma

                                Anotações:

                                • \( P(A) = P(A \mid B)P(B) + P(A \mid B^c)*P(B^c) \) Question, prove above
                              2. Independance
                                1. Def.

                                  Anotações:

                                  • \( P(A \cap B) = P(A)(B) \)

                                Semelhante

                                Maths Probability
                                Will Thorpe
                                Probability S1
                                Alice Kimpton
                                Maths Exponents and Logarithms
                                Will Thorpe
                                GCSE Maths: Statistics & Probability
                                Andrea Leyden
                                New GCSE Maths required formulae
                                Sarah Egan
                                Counting and Probability
                                Culan O'Meara
                                Teoría de Conteo
                                ISABELLA OSPINA SAENZ
                                Probability
                                Ravindra Patidar
                                Mathematics Prep for maths exam
                                Lulwah Elhariry
                                Probability
                                Dami Alvarez
                                Higher-order Cognition
                                Sneha Mittal