Matemáticas V "Cálculo diferencial e integral"

Descrição

Mapa Mental sobre Matemáticas V "Cálculo diferencial e integral", criado por aury_isa em 02-12-2014.
aury_isa
Mapa Mental por aury_isa, atualizado more than 1 year ago
aury_isa
Criado por aury_isa quase 10 anos atrás
44
2

Resumo de Recurso

Matemáticas V "Cálculo diferencial e integral"
  1. ¿de que trata el cálculo diferencial e integral?
    1. Aspectos históricos del cálculo
      1. ¿qué debo saber antes de comenzar a ver el tema del cálculo diferencial e integral?
        1. Las primeras concepciones del hombre sobre el universo y su evolución basados en teorías que nos llevan a las nociones principales del cálculo diferencial e integral
        2. Inicia con las concepciones del universo
          1. Ptolomeo
            1. Modelo matemático para la posición de los planetas
            2. Copernico
              1. El sol en el centro y los planetas giran alrededor
              2. Newton
                1. Determina la fuerza de gravedad, propone el cálculo diferencial e integral
                2. Einstein
                  1. Teoría de la relatividad
                  2. Finales del siglo XVI: Movimiento de cuerpos celestes como problema fundamental de la física. Cambio a dos nociones:Magnitud variable y función. Abstracción matemática
              3. Funciones
                1. Definiciones básicas
                  1. ¿Cuáles son estas definiciones?
                    1. Hay dos definiciones de función
                      1. Relación entre dos magnitudes variables
                        1. Relaciona los elementos de un conjunto del dominio con uno y sólo uno del contradominio
                    2. Clasificación
                      1. Se clasifican en
                        1. Algebraicas
                          1. No algebraicas
                          1. Denominación del dominio y el contradominio
                            1. ¿qué es y como se determinan estas variables?
                              1. El dominio es la magnitud variable independiente por lo que puede darse cualquier valor que no este reinstringido
                                1. El contradominio también llamado rango o recorrido es la magnitud variable dependiente a la cual se le asignan valores respecto al dominio
                                2. Funciones trigonométricas, exponenciales, logarítmicas y sus propiedades
                                    1. Operaciones con funciones
                                      1. Suma: f(x)+g(x)=(f+g)(x)
                                        1. Resta: f(x)-g(x)=(f-g)(x)
                                          1. Multiplicación: f(x)*g(x)=(f)(g)(x)
                                            1. División:f(x)/g(x)=(f/g)(x)
                                              1. Composición: f(x) o g(x)= (f o g)(x)
                                            2. Límites y continuidad
                                                1. ¿Qué es un límite y como se cálcula?
                                                  1. Es una magnitud fija a la que se aproximan cada vez más los términos de una secuencia infinita de magnitudes.Un límite se cálcula asignandole el valor al que tiende x en la fórmula.
                                                  2. Límites en que interviene el infinito
                                                    1. Hay 4 teoremas en aplicación de límites infinitos y al infinito
                                                    2. ¿Qué es la continuidad?
                                                      1. Intuitivamente se puede decir que una función es continua cuando en su gráfica no aparecen saltos o cuando el trazo de la gráfica no tiene "huecos"
                                                    3. La derivada y sus aplicaciones
                                                        1. ¿Cómo se define la derivada?
                                                          1. La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente
                                                          2. ¿Cómo se deriva con fórmulas?
                                                            1. Hay 9 fórmulas para la derivación ya establecidas las cuales todas son deducidas de la regla general las cuales se deben aprender de memoria para una correcta derivación
                                                            2. ¿cual es la regla de la cadena?
                                                              1. La regla de la cadena es una fórmula para la derivada de la composición de dos funciones. Tiene aplicaciones en el cálculo algebraico de derivadas cuando existe composición de funciones
                                                              2. ¿para que sirve la derivada y cuales son sus aplicaciones?
                                                                1. Las derivadas sirven para solucionar problemas de física y todas las materias que se basan en ella como estática, cinemática, calor, mecánica, ondas, corriente eléctrica, magnetismo, etc. y hasta como lo vimos en clase de biología como el problema que se nos planteaba sobre el volumen de las celulas respecto al tiempo o el crecimiento de una colonia de bacterias, etc. se pueden encontrar muchas aplicaciones para la derivada, de ahí también su aplicación en diferentes problemas matematicos
                                                              3. la integral y sus aplicaciones
                                                                1. ¿cual es la función integral definida y la indefinida?
                                                                  1. ¿cuales son las reglas básicas para la integración?
                                                                    1. ¿que es la función antiderivada y cual es el teorema fundamental del calculo?

                                                                    Semelhante

                                                                    CINÉTICA QUÍMICA
                                                                    Yani
                                                                    Matérias para Estudar para o Vestibular
                                                                    Alice Sousa
                                                                    ESTRUTURA DAS PALAVRAS - Morfologia
                                                                    Viviana Veloso
                                                                    CONCURSO BANCO DOBRASIL- ESCRITURÁRIO
                                                                    Alessandra S.
                                                                    Como começar um texto acadêmico?
                                                                    fevereirode1984
                                                                    Principais temas para estudar Português
                                                                    Marina Faria
                                                                    Principais temas para estudar em Biologia
                                                                    GoConqr suporte .
                                                                    Linha Cronológica Filosofia
                                                                    Natália Latin
                                                                    Quiz (Interpretação Textual) - T6s
                                                                    Rodrigo de Freit9506
                                                                    Contextualização da Aula 2 - Tecnologia na Formação Profissional - SAÚDE
                                                                    Fabrícia Assunção