Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )

Descrição

Logistic Regresion Models
karlagape17
Mapa Mental por karlagape17, atualizado more than 1 year ago
karlagape17
Criado por karlagape17 mais de 9 anos atrás
22
0

Resumo de Recurso

Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )
  1. The Multiple Logistic Regression Model
    1. INTRODUCTION
      1. ability to handle many variables
      2. MODEL
        1. TESTING THE MODEL
          1. univariable Wald test statistics
        2. Simple
          1. INTRODUCTION
            1. outcome variable is discrete, binary or dichotomous.
              1. Example 1 Excel-Star
                1. Follow Logistic distribution
                  1. logistic regression model
                    1. Summary:
                      1. 1. The model for the conditional mean of the regression equation must be bounded between zero and one. 2. The binomial, not the normal, distribution describes the distribution of the errors and is the statistical distribution on which the analysisis based
                    2. FITTING THE LOGISTIC REGRESSION MODEL
                      1. maximum likelihood.
                        1. the method yields values for the unknown parameters that maximize the probability of obtaining the observed set of data. In order to apply this method we must first construct a function, called the likelihood function
                          1. The maximum likelihood estimators of the parameters are the values that maximize this function
                      2. TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS
                        1. The statistic D is called the deviance, and for logistic regression, Is the same as the sum-of-squares in linear regression
                        2. CONFIDENCE INTERVAL ESTIMATION
                        3. Multinomial and Ordinal Outcomes
                          1. nominal with more than two levels
                            1. discrete choice model
                              1. The variable has three levels A,B or C is chosen.Possible covariates might include gender,age,income,family size,and others.
                                1. multinomial ,polychotomous, or polytomous logistic regression
                              2. Model
                                1. p covariates and a constant term, denoted by the vector x,of length p+1,where x0=1.
                              3. Interpretation of the Fitted Logistic Regression Model

                                Semelhante

                                Manual de Técnicas de Redação
                                Alessandra S.
                                ATRIBUTOS DE UM LÍDER
                                willian reis
                                Provas anteriores de Vestibular - Fuvest 1
                                GoConqr suporte .
                                Reinos - Características Gerais/Biologia
                                GoConqr suporte .
                                Processo Civil
                                Marcela Martins
                                Como Estudar Matemática
                                GoConqr suporte .
                                Direito Constitucional - Direitos e Garantias Fundamentais
                                aline.costaa
                                Plano de estudos ENEM - Parte 2 *Exatas/Biológicas
                                GoConqr suporte .
                                Cálculo estequiométrico
                                Alice Sousa
                                Art. 5º da CF/88
                                Luís Felipe Mesiano