null
US
Entrar
Registre-se gratuitamente
Registre-se
Detectamos que o JavaScript não está habilitado no teu navegador. Habilite o Javascript para o funcionamento correto do nosso site. Por favor, leia os
Termos e Condições
para mais informações.
Próximo
Copiar e Editar
Você deve estar logado para concluir esta ação!
Inscreva-se gratuitamente
35365
Crypto U3, Theoretical vs. Practical Security
Descrição
IYM002 (Unit 3 - Further basics of Crypto Design) Mapa Mental sobre Crypto U3, Theoretical vs. Practical Security, criado por jjanesko em 31-03-2013.
Sem etiquetas
iym002
unit 3 - further basics of crypto design
iym002
unit 3 - further basics of crypto design
Mapa Mental por
jjanesko
, atualizado more than 1 year ago
Mais
Menos
Criado por
jjanesko
quase 12 anos atrás
120
12
0
Resumo de Recurso
Crypto U3, Theoretical vs. Practical Security
perfect secrecy
Attacker gets no info about the plaintext by observing the ciphertext, other than what was was known before the ciphertext was cobserved.
Gordon's "flash math" version of perfect secrecy
Anotações:
[Image: https://lh5.googleusercontent.com/-bm3mNTn_vpY/UVf2zUjHt8I/AAAAAAAAAbM/2PH9xvxP4QQ/s582/flashymathdefinitionofperfectsecrecy.png]
in theory, there exists unbreakable cryptosystems
perfectly secret
one time pad
each letter of a plaintext is transformed with a randomly generated key that is the same length as the plaintext
practical problems
key establishment expensive (creating random sequences)
key distribution a challenge (key changes each time)
key length potentially very large
OTP
practical security
COVERAGE what is the covertimeneeded for the plaintext?
design system to protect against known attacks that would result in plaintext compromise in shorter than covertime
computational complexity
algorithm complexity
for each possible input to the algorithm, the amount of time it takes to run
length of input measured in bits
mathematical complexity - algorithms can be run in
polynomial time
a algorithm that can usually be run in real time with any sized input
"time taken to execute process for an input of size n is not greater than n^r for some number r"
example: multiplication, addition
expontential time
an algorithm that cannot be run in "real" time with most inputs
"if the time taken to execute the process for an input of size n is approximately a^n for some number a"
example: factorization
Just because an algorithm is exponentially hard, it does not mean that it is impossible to solve for all values.
computing exhaustive key search time
need
algorithm complexity
computer speed
example
general algorithm complexity forkey search is 2^n
our example key length is 30, so the complexity for this example is n^30
our example computer does 1,000,000 operations per second
So, 2^30 / 10^6 = roughly 1000 seconds
EVOLUTION when designing algorithms, take into consideration current and emerging state of processing power in computers
when designing cryptosystems, make sure that the implementation does not undermine the power of the algorithms used
practice good key management
Quer criar seus próprios
Mapas Mentais
gratuitos
com a GoConqr?
Saiba mais
.
Semelhante
Crypto U4, Block Cipher, Cipher Feedback Mode (CFB)
jjanesko
Crypto U4, Block Cipher, Cipher Block Chaining Mode (CBC)
jjanesko
Crypto U1, Basic Principles
jjanesko
Crypto U4, Stream Cipher
jjanesko
Crypto U4, Block Cipher, Electronic Codebook Mode (ECB)
jjanesko
Crypto U4, Block Cipher, Counter Mode
jjanesko
Crypto U2, Crypto design principles
jjanesko
Crypto U8, example dynamic password scheme
jjanesko
Crypto U10 (part 1), Key Management & Lifecycle
jjanesko
Crypto U10 (part 2), Key Management and Lifecycle
jjanesko
Crypto U8 (part 3), entity authentication
jjanesko
Explore a Biblioteca