null
US
Entrar
Registre-se gratuitamente
Registre-se
Detectamos que o JavaScript não está habilitado no teu navegador. Habilite o Javascript para o funcionamento correto do nosso site. Por favor, leia os
Termos e Condições
para mais informações.
Próximo
Copiar e Editar
Você deve estar logado para concluir esta ação!
Inscreva-se gratuitamente
579182
C1
Descrição
A Levels Maths Mapa Mental sobre C1, criado por luisnorth em 25-02-2014.
Sem etiquetas
a levels
maths
maths
a levels
Mapa Mental por
luisnorth
, atualizado more than 1 year ago
Mais
Menos
Criado por
luisnorth
mais de 10 anos atrás
60
4
0
Resumo de Recurso
C1
Simultaneous Equations & Disguised Quadratics
Linear
Add/ subtract the two equations to eliminate one variable
Set one equal to y or x and substitute in
Quadratic
Substitution
Disguised Quadratics
Some equations- eg x^4-x^2-5=0 can be converted to quadratic equations to solve more easily
If there are three orders, ie x^4, x^2, x^0
let A = the middle order, therefore highest order = A^2
Quadratics
eg 4x^2+3x+7=0
Solving
If the equation factorises
Each bracket = 0
eg.(4x+3)(x-2)=0
x = -3/4 or x = 2
If does not factorise...
Quadratic formula
x= (-b ± √(b^2-4ac) ) / 2a
Complete the square
x^2 ± bx = (x±b/2)^2 - (b/2)^2
Rearrange to find one or two values of x
a(x+b)^2 + c
Vertex = (-b, c )
Inequalities
If multiplying or dividing by a negative number, REVERSE the sign
Quadratic
Set so that equation = 0
Factorise
If equation > 0 it is where the graph is above the x axis
If equation < 0 it is where the graph is below the x axis
Intersections of lines
Set equal to eachother to eliminate y
Remember to get the y values at the end by re-substituting the x values
Gradients, tangents and normals
To find a gradient, differentiate the equation and then substitute in the x value
The tangent to a curve has the same gradient as the point on the curve it touches
y+y-value= m (x + x-value)
Stationary points
when dy/dx = 0
solve dy/dx=0 to find stationary points
Differentiate dy/dx to give d^2y/dx^2 . Substitute in x values, if negative then it is a max point, if positive it is a min point
Coordinate Geometry, Lines and Circles
Midpoints, gradients and distance between two points
Point A => (x,y) Point B => (w,z)
midpoint = ( (x+w)/2 , (y+z)/2 )
length of the line through AB = √{ (x+w)^2 + (y+z)^2 }
Gradient = (x-w)/(y-z)
equation of a line through (a,b) with gradient m is y-b = m(x-a)
Circles
Equation of a circle centre (a,b) radius r = (x-a)^2 + (x-b)^2 = r^2
Surds and indices
Surds
√m x √n = √mn
√m / √n = √(m/n)
To simplify k/√a multiply by √a / √a
Indices
a^(-n) = 1/(a^n)
a^n x a^m = a^(m+n)
a^m / a^n = a^(m-n)
(a^m)^n = a^(m x n)
a^0 = 1
a ^ (1/n) = n√a
a^ (m/n) = n√a^m
Curve sketching and transformations
any graph of the form y=x^n pass through (0,0) and (1,1)
y=f(x)
y=f(x) + a is a transformation a units upwards
y=f(x+a) is a transformation -a units to the right
y = f(ax) is a stretch sf 1/a parallel to x axis
y = af(x) is a stretch sf a parallel to y axis
Quer criar seus próprios
Mapas Mentais
gratuitos
com a GoConqr?
Saiba mais
.
Semelhante
Transforming Graphs
james_hobson
AS level Maths Equations to Remember
Gurdev Manchanda
Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
GCSE Maths: Geometry & Measures
Andrea Leyden
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan
New GCSE Maths
Sarah Egan
Explore a Biblioteca