null
US
Entrar
Registre-se gratuitamente
Registre-se
Detectamos que o JavaScript não está habilitado no teu navegador. Habilite o Javascript para o funcionamento correto do nosso site. Por favor, leia os
Termos e Condições
para mais informações.
Próximo
Copiar e Editar
Você deve estar logado para concluir esta ação!
Inscreva-se gratuitamente
7017621
Espacio Vectorial
Descrição
espacio vectorial
Sem etiquetas
espacio vectorial
algebra
r3
r2
Mapa Mental por
venlly Bernal
, atualizado more than 1 year ago
Mais
Menos
Criado por
venlly Bernal
quase 8 anos atrás
58
0
0
Resumo de Recurso
Espacio Vectorial
¿Qué es?
Es una estructura algebraica creada a partir de un conjunto no vacío, una operación interna y una operación externa.
Propiedades fundamentales
Sean u,v, w vectores del conjunto K
Asociativa (+)"suma":
(u + v) + w = u + (v + w), u, v, w ∈ K
Conmutativa
u + v = v + u, u, v, ∈ K .
Elemento neutro
v+0= 0+v=v, v ∈ K .
Elemento opuesto
v+(-v)=(-v)+v=0, v ∈ K.
Distribuitiva I
a · (u + v) = a · u + a · v, a ∈ R, u, v ∈ K
Distribuitiva II
(a + b) · v = a · v + b · v, a, b ∈ R, v ∈ K .
Asociativa (·) "Producto escalar"
a · (b · v) = (ab) · v, a, b ∈ R, v ∈ K
Elemento unidad
1 · v = v, v ∈ V .
Ejemplos
Vectores en R2
Dimensión del espacio vectorial será 2
(R2,+,·)
Que significa que este es el conjunto de los vectores de R2, con la suma y el producto escalar
Ejemplo: sea (a,b) un vector de R2, el cual tiene dos componentes.
Vectores en R3
Dimensión del espacio vectorial será 3
(R3,+,·)
Que son todos los vectores que se pueden definir en R3
Matrices
2x2
Dimensión del espacio vectorial será 4
3x3
Dimensión del espacio vectorial será 9
Polinomios
P1(x)+,·)
Es el espacio vectorial de los polinomios de primer grado, con la suma y con el producto escalar
Dimensión del espacio vectorial será 2
P2(x)+,·)
Es el espacio vectorial de los polinomios de segundo grado, con la suma y con el producto escalar
Dimensión del espacio vectorial será 3
P3(x)+,·)
Es el espacio vectorial de los polinomios de tercer grado, con la suma y con el producto escalar
Dimensión del espacio vectorial será 4
Quer criar seus próprios
Mapas Mentais
gratuitos
com a GoConqr?
Saiba mais
.
Semelhante
Factorización de Expresiones Algebráicas
maya velasquez
Factorización de expresiones algebraicas_1
Juan Beltran
Factorización de expresiones algebraicas_2
Juan Beltran
Introducción al Álgebra
Tulio Herrera
ESTRUCTURAS ALGEBRAICAS
David Hdez
Solucion de limites por medio de L'Hopital
OMAR GARCIA PEREZ
REDES
FANNY CAYO
TEST DE REDES DE COMPUTADORAS
FANNY CAYO
FACTORIZACION DE POLINOMIOS
Faber Garcia
Matemáticas- Álgebra
dayana burguez
Álgebra examen numero 1.
Ana Jacqueline M
Explore a Biblioteca