PHYS2041 Quantum Mechanics

Descrição

Queensland Certificate of Education Physics Mapa Mental sobre PHYS2041 Quantum Mechanics, criado por Lucy Lowe em 24-07-2017.
Lucy Lowe
Mapa Mental por Lucy Lowe, atualizado more than 1 year ago
Lucy Lowe
Criado por Lucy Lowe mais de 7 anos atrás
81
0

Resumo de Recurso

PHYS2041 Quantum Mechanics
  1. Wave-particle duality

    Anotações:

    • every object has wave-like and particle-like properties (microscopic objects 'are’ particles and waves at the same time)
    1. De Broglie wavelength

      Anotações:

      • De Broglie wavelength \[ \lambda = \frac{h}{p} \] h = 6.24  x10-34 Js
      1. non-relativistic particles

        Anotações:

        • Momentum \[ p = mv \] \(m \) -mass (kg) \(v = |v| \) -speed \(h\) - plank's constant \(6.62607004\times10-34 Js \) wavelength \[ \lambda = \frac{h}{mv} \]
        1. particles of light

          Anotações:

          • photons = quanta of E.M radiation \[ p = hk = h \omega/c \rightarrow \lambda = \frac{h}{p} = \frac{2 \pi h}{p} = \frac{2 \pi h}{\omega} =Tc \]   \(\lambda \) - wavelength\(T\) -oscillation period \(\omega \) - frequency\(k = 2 \pi / \lambda \) - wave-number
          1. Energy of photon

            Anotações:

            • \(E = h \mu \) \( \lambda = \frac{h}{p} \) \[ E  = \frac{hc}{\lambda} = pc \] \( \mu \) - period
          2. kinetic Energy

            Anotações:

            • \[\frac{1}{2} mv^2 = \frac{1}{2} pv =  \frac{p^2}{2m} \]
          3. momentum >= 0

            Anotações:

            • Energy is never zero Always ground amount of energy p =mv = kg m/s
        2. quantised

          Anotações:

          • comes in discrete portions -Enger in light particles
          1. Black body radiation

            Anotações:

            • how heated bodies radiate 
            1. Rayleigh-Jeans intensty spectrum result

              Anotações:

              • \[ I(\lambda ) = \frac{8 \pi}{ \lambda^4} k_{B} T \]
              1. E.M. radiation

                Anotações:

                • -Field that permeates all space Max Planck (1900): Energy of E.M. radiation isquantised (comes in discrete portions): \[ E = nh \omega \]\(n = 0,1,2,3,... \) -  number of excitation quantah - planks constant\( \omega \) - frequency
                1. classically

                  Anotações:

                  • Each standing wave or oscillator mode has two degrees of freedom classically, and should have an average thermal energy . \[ k_{B} T \] (classically) ultraviolet  catastrophe
                2. Planck’s (quantum) radiation law

                  Anotações:

                  • \[ I(\lambda ) = \frac{8 \pi hc}{ \lambda^{5} \left(e^{\frac{hc}{ \lambda k_{B} T}} -1\right)} \]
                3. Photo-electric effect
                  1. Atomic spectra

                    Anotações:

                    • emission spectrum of atoms consists of just few (discrete) narrow spectral lines at certain wavelengths
                    1. Hydrogen atom spectrum
                      1. Bohr's Rule

                        Anotações:

                        • 2π x (electron mass) x (electron orbital speed) x (orbit radius) = (any integer) x h
                        • The energy lost by the electron is carried away by a photon: photon energy = (e’s energy in larger orbit) - (e’s energy in smaller orbit)
                      2. The wave function

                        Anotações:

                        • Can only describe quantum systems when closed system (pure states). Open systems are described by density matrix.
                        1. The Schrodinger Equation

                          Anotações:

                          • \[ ih \frac{ \Psi}{dt} = -\frac{h^2}{2m} \frac{d^2 \Psi}{dx^2} + V(x,t) \Psi \]
                          1. The particle must be somewhere

                            Anotações:

                            • \[ \int_{- \infty}^{\infty} |\Psi( x,t)|^2 dx = 1 \]
                          2. Normalisation
                            1. probabilty density

                              Anotações:

                              • \[ <x> = \int_{-\infty}^{+\infty} x |\Psi (x, t)|^2 dx \] expectation value of x^2 \[ <x^2>  = \int_{-\infty}^{+\infty} x^2 |\Psi (x, t)|^2 dx \]
                              • mean variance of particle position, standard deviation. \[ \alpha_{x} = \sqrt{<(\Delta x)^2>} = \sqrt{ <x^2> - <x>^2} \]
                            2. Expectation or mean values

                              Anotações:

                              • \[ \langle O \rangle  = \int dx \psi*O(x,p) \psi \]
                              1. coordinate representation
                                1. momentum operator

                                  Anotações:

                                  • \[ \hat{p} = -ih \frac{d}{dx} \]
                              2. infinite well
                                1. Energy

                                  Anotações:

                                  • \[E_n = \frac{h^2}{2m}(\frac{\pi}{a})^2n^2\]
                                  1. wave function
                                  2. harmonic oscillator
                                    1. length scale

                                      Anotações:

                                      • \[l_{ho} = \sqrt{\ hbar /m \omega} \]
                                      1. Properties of raising and lowering operators

                                        Anotações:

                                        • \[ \hat{a}_+ \psi_n = \sqrt{n+1}\psi_{n+1} \] \[ \hat{a}_- \psi_n = \sqrt{n}\psi_{n-1} \]

                                      Anexos de mídia

                                      Semelhante

                                      Quantum Mechanics
                                      emmalmillar
                                      Quantum physics
                                      hmccain
                                      Waves
                                      kate.siena
                                      Forces and their effects
                                      kate.siena
                                      Forces and motion
                                      Catarina Borges
                                      AQA Physics P1 Quiz
                                      Bella Statham
                                      GCSE AQA Physics - Unit 3
                                      James Jolliffe
                                      Using GoConqr to study science
                                      Sarah Egan
                                      GCSE AQA Physics 1 Energy & Efficiency
                                      Lilac Potato
                                      Junior Cert Physics formulas
                                      Sarah Egan
                                      P2 Radioactivity and Stars
                                      dfreeman