Criado por karlita ortiz
mais de 5 anos atrás
|
||
La diversidad de situaciones que se proponga a los alumnos en la escuela propiciará que sean cada vez más capaces, por ejemplo, de contar los elementos en un arreglo o colección, y representar de alguna manera que tienen cinco objetos (abstracción numérica); podrán inferir que el valor numérico de una serie de objetos no cambia sólo por el hecho de dispersar los objetos, pero cambia –incrementa o disminuye su valor– cuando se agregan o quitan uno o más elementos a la serie o colección. Así, la habilidad de abstracción les ayuda a establecer valores y el razonamiento numérico les permite hacer inferencias acerca de los valores numéricos establecidos y a operar con ellos.
En este proceso también es importante que los niños se inicien en el reconocimiento de los usos de los números en la vida cotidiana; por ejemplo, que empiecen a reconocer que sirven para contar, que se utilizan como código (en las placas de los autos, en las playeras de los jugadores, en los números de las casas, en los precios de los productos, en los empaques) o como ordinal (para marcar la posición de un elemento en una serie ordenada).
El desarrollo de las nociones espaciales implica un proceso en el que los alumnos establecen relaciones entre ellos y el espacio, con los objetos y entre los objetos, relaciones que dan lugar al reconocimiento de atributos y a la comparación, como base de los conceptos de forma, espacio y medida. En estos procesos cada vez van siendo más capaces, por ejemplo, de reconocer y nombrar los objetos de su mundo inmediato y sus propiedades o cualidades geométricas (forma, tamaño, número de lados), de utilizar referentes para la ubicación en el espacio, así como de estimar distancias que pueden recorrer o imaginar.
A partir de las experiencias que los alumnos vivan en la escuela relacionadas con la ubicación espacial, progresivamente construyen conocimientos sobre las relaciones de ubicación: la orientación (al lado de, debajo de, sobre, arriba de, debajo de, delante de, atrás de, a la izquierda de, a la derecha de), la proximidad (cerca de, lejos de), la interioridad (dentro de, fuera de) y la direccionalidad (hacia, desde, hasta). Estas nociones están asociadas con el uso del lenguaje para referir relaciones, la posición y el uso de un punto de referencia particular, y tratándose de direccionalidad se involucran dos puntos de referencia
En relación con las nociones de medida, cuando las niñas y los niños se ven involucrados en situaciones que implican, por ejemplo, explicar cómo se puede medir el tamaño de una ventana, ponen en práctica herramientas intelectuales que les permiten proponer unidades de medida (un lápiz, un cordón), realizar el acto de medir y explicar el resultado (marcando hasta dónde llega la unidad tantas veces como sea necesario para ver cuántas veces cabe la unidad en lo que se quiere medir y llegar a expresiones del tipo: “esto mide 8 lápices y un pedacito más”), lo cual implica establecer la relación entre la magnitud que se mide y el número que resulta de medir (cuántas veces se usó el lápiz o el cordón).
La construcción de nociones de forma, espacio y medida en la educación preescolar está íntimamente ligada a las experiencias que propicien la manipulación y comparación de materiales de diversos tipos, formas y dimensiones, la representación y reproducción de cuerpos, objetos y figuras, y el reconocimiento de sus propiedades. Para estas experiencias constituye un recurso fundamental el dibujo, las construcciones plásticas tridimensionales y el uso de unidades de medida no convencionales (un vaso para capacidad, un cordón para longitud).
El desarrollo de las capacidades de razonamiento en los alumnos de educación preescolar se propicia cuando realizan acciones que les permiten comprender un problema, reflexionar sobre lo que se busca, estimar posibles resultados, buscar distintas vías de solución, comparar resultados, expresar ideas y explicaciones y confrontarlas con sus compañeros. Ello no significa apresurar el aprendizaje formal de las matemáticas, sino potenciar las formas de pensamiento matemático que los pequeños poseen hacia el logro de las competencias que son fundamento de conocimientos más avanzados, y que irán construyendo a lo largo de su escolaridad.
Quer criar suas próprias Notas gratuitas com a GoConqr? Saiba mais.