Algebra 2- Solving Equations and Expressions

Descrição

This will help you prepare for the beginning of Algebra 2.
boblanete
Notas por boblanete, atualizado more than 1 year ago Mais Menos
Criado por um usuário excluído aproximadamente 9 anos atrás
boblanete
Copiado por boblanete aproximadamente 9 anos atrás
9
0

Resumo de Recurso

Página 1

1-1 Expressions and Formulas 

Questions:

Find the value of each expression. (Note: Use Order of Operations, PEMDAS)1. 8(3+6)                                                2. 10-8/2                                              3. 14(2)-5                         4. [9+3(5-7)] /3                     5. [6-12-8^2]           6. 17(2+26)/4=119 Answer: 72                                            Answer: 6                                          Answer:23                       Answer:1                              Answer:-2                 Do yourself!

Evaluate each expression if x=4, y=2, and z=6

10. z-x+y          11. x+(y-1)^2          12. x+[3(y+z)-y]Answer:0         Answer:-23             Answer: 18

Evaluate each expression.

13. √9                     14. √16                15. √100           16. √169         17. - √4          18. -√25       19. √4/9               20. √36/49Answer:3                 =4                       =10                   =13                  = -2                  = -5               =2/3                     =6/7

1-2 Properties of Real Numbers

Information:

real numbers :all the numbers that you use in everyday use.real number= rational and irrational numbers.

What are rational and irrational numbers?rational numbers: integers like 1,2,3,4,5, etc. They can also be fractions and decimals that repeat and does not go on forever. irrational numbers: decimals that don't repeat and goes on forever. Example: √110, π

Classifying Numbers natural (N)     whole(W)    integers(Z) rational(Q)     real (R)        Irrational (I)

Questions:

Name the sets of numbers to which each number belongs.1. -4  Z, Q, R       2.  45   N, W, Z, Q, R    3.   6.233333333...    Q,R          

Name the property illustrated by each equation.7. 2/3 x 3/2=1                                                       8. (a+4)+2= a+ (4+2)                                          9. 4x+0=4xAnswer: Multiplication Property                  Answer: Associative Property                       Answer: Addition Identity 

Identify the addition inverse and multiplication inverse for each number.10.  -8                                   11. 1/3                                           12.  1.5 Answer:8, -1/8                Answer: -1/3, 3                         Answer: -1.5, 2/3 

Simplify each expression.13. 3x+4y-5x                          14. 9p-2n+4p+2n              15. 3(5c+4d) + 6(d-2c)Answer: -2x+4y                  Answer:13p                       Answer: 3c+18d

1-3 Solving Equations 

Information:

Open Sentence: A mathematical sentence containing one or more variables. 

Equation: a mathematical sentence stating that two mathematical expressions are equal.

Write an algebraic expression to represent each verbal expression.  BOLD=Answer

4. five increased by four times a number. 5+4n 5. twice a number decreased by the cube of the same number.  2n-n^3

Write a verbal expression to represent each statement.  BOLD=Answer6. 9n-3= 6  9 times a number decreased by 3 is 6 7. 5+3x^2=2x   5 plus 3 times the square of a number is twice that number.

Name the property illustrated by each statement. BOLD=Answer

8. (3x+2) -5= (3x+2)-5              9.  IF 4c =15, then 4c+2= 15+2Reflexive Property               Addition Property (=)

Solve each equation. Check your solution. 

10. y+14=-7                  11.  7+3x=49                      12. -4 (b+7) = -12                  13. 7q+q-3q= -24                  14. 1.8a-5= -2.3 y=-21                               x=14                                   b= -4                                        q= -4.8                                     a=1.5

1-4 Solving Absolute Value 

Questions:

absolute value: a number is distance from 0 on a number line. Since distance is positive the absolute value is positive. 

Information:

empty set: For example |x|= -5 is not a true statement which means it has no solution. The solution set for this type of equation.

Questions:

Evaluate each expression if a= -4 and b= 1.55. |a+12| 8                           6. |-6b| 9                         7.  - |a+21| -17

Solve each equation. Check your solutions.

8. |x+4|=17                  9.  |b+15|=3 x=13                               x= -12, -18[ -21,13]  

Evaluate each equation if a= 5, b=6, and c= 2.8.17.|-3a| 15                  18. |4b| 24                        19. |a+5| 0                20. |2-b| 4                22. |4a+7| 1328. |a-b| -- |10c-a|  DO YOURSELF

1-5  Solving Inequalities 

Information:

Trichotomy Property: property of order

Addition Inequalities

In Words: For any real numbers, a,b,c, if a>b, then a+c>b+c

Addition Inequality  Words: For any real numbers a,b,c. If a>b, then a+c>b+c. If a Example: 3

Subtraction Inequality  Words: For any real numbers a,b,c. If a>b, then a-c> b+c. If a Example:2>7 ; 2-8>7-8

Multiplication Inequality Words: For any real numbers a,b,c.  C is positive if  a then ac>bc. If ben acb then ac>bc  -2

Division Inequality  Words: For any real numbers a,b,c. C is positive if abc. If bve if ab, then ac>bc. Example: -2

set-builder notation: The solution set of an inequality. For example {x|x>9}Interval notation: the solution set of an inequality being described x≥ -2  (+,-2)

Questions:

 Solve each inequality. Describe the solution set using set builder notation or interval notation.

1-1;1-2

1-3, 1-4

1-5, 1-6

Semelhante

GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell
All AS Maths Equations/Calculations and Questions
natashaaaa
GCSE Maths: Algebra & Number Quiz
Andrea Leyden
Solving Simultaneous Equations
Oliver Murphy
Using Formulas
grace0448
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
AS level Maths Equations to Remember
Gurdev Manchanda
Trigonometry, Equations, Pythagoras theorem
Caitlin Mortlock
Transforming Graphs
james_hobson
A-level Maths: Key Differention Formulae
humayun.rana