Metodología 1a. Parte

Descrição

Notas sobre Metodología 1a. Parte, criado por danieefs em 29-05-2014.
danieefs
Notas por danieefs, atualizado more than 1 year ago
danieefs
Criado por danieefs mais de 10 anos atrás
564
0

Resumo de Recurso

Página 1

La derivada de una función: La derivada de una función real de variable real continua, se obtiene como el límite del cociente del incremento de la función entre el incremento de la variable independiente, cuando el incremento de la variable independiente tiende a cero.

Aplicando la definición de la derivada. Se sustituyen los datos. Se eleva el binomio (x+h) al cuadrado.  Simplificando. Se suman los términos semejantes.  Se realiza la división. Finalmente, calculando el límite cuando h-0 se obtiene la derivada de la función.

Teoremas para el cálculo de derivadas:Para calcular la derivada de una función real de variable real, es mediante el uso de teoremas.

Para el calculo de la derivada de funciones de este tipo (racionales) mediante las leyes de los exponentes, se expresa la función como potencia*  Se aplica el teorema 4  Expresando nuevamente la función en términos de exponentes positivos, se tiene la derivada de la función.

Más teoremas de derivadas:Si f(x) y g(x) son dos funciones continuas, se tienen más derivadas para el calculo de derivadas.

Se aplica el teorema 6. Dx[f(x).g(x)]= f(x) Dx g(x)+g(x) Dx f(x). Se sustituyen los datos. Calcular las derivadas que aparecen indicadas. Sumando términos semejantes. Se obtiene el resultado.

Derivada de las funciones trigonométricas directas:La derivada de las seis funciones trigonométricas directas se obtienen aplicando los siguientes teoremas.

Considerando que U es una función continua de x, esto es: u= f(x)

Se localiza u. Se aplica teorema correspondiente en este caso es: Dx sen u= cos u Dx u. Se sustituyen datos. Se calcula la derivada indicada. Se reordena los términos. Se obtiene el resultado.

Derivada de las funciones trigonométricas inversas: Para calcular la derivada de las funciones trigonométricas inversas, se aplican los siguientes teoremas.considerando que U es una función continua de x, esto es u=f (x)

Se aplica el teorema correspondiente. En este caso se aplicará el teorema Dx arc sec u= 1÷ u ^2-1. Se localiza u en la función. Se sustituyen los datos. Se calcula la derivada indicada. Pasa como nominador el resultado de la derivada indicada. Se obtiene el resultado.

La derivada de una función

Teoremas para el calculo de derivadas

Más teoremas de derivadas

derivadas TRIGONOMÉTRICAS directas

derivadas TRIGONOMÉTRICAS inversas

Semelhante

MAPA MENTAL - METODOLOGIA DO ENSINO SUPERIOR
ilda_silverio
Entidades da Administração Indireta
roberta.dams
TIPOS - AÇÃO PENAL
Fernando Odnanref
Gramática para o First Certificate II
GoConqr suporte .
Informática de A a Z
fabianomotta
DIREITO PROCESSUAL PENAL
Joelma Silva
ENGENHARIA CIVIL
Nayara Gil
Características do Trovadorismo
gvitoriaaraujp12
FLUXOGRAMA PARA ATENDIMENTO E ACOMPANHAMENTO ACIDENTE COM EXPOSICAO A MATERIAL BIOLÓGICO (AEMB)
Hyago Connor
I wish I..
Joao Antonio