Vishakha Achmare
Quiz por , criado more than 1 year ago

A basic quiz on Inferential Statistics.

20
0
0
Vishakha Achmare
Criado por Vishakha Achmare quase 4 anos atrás
Fechar

Inferential Statistics for Data Science

Questão 1 de 50

1

Select the right answer.

With the help of inferential statistics, we can :

Selecione uma das seguintes:

  • Making conclusions from a sample about the population

  • Conclude if a sample selected is statistically significant to the whole population or not

  • Compare two models to find which one is more statistically significant as compared to the other.

  • We can do feature selection, whether adding or removing a variable helps in improving the model or not.

  • Hypothesis testing.

  • All

Explicação

Questão 2 de 50

1

Standard Error is the amount of variation in the _________ data. It is related to Standard Deviation as σ/√n, where, n is the _________ size.

Selecione uma das seguintes:

  • Sample

  • Population

Explicação

Questão 3 de 50

1

A Sampling Distribution is a probability distribution of a statistic (Mean/Median/Mode) obtained through a large number of samples drawn from a specific population.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 4 de 50

1

A Sampling Distribution behaves much like a normal curve and has some interesting properties like :

Selecione uma das seguintes:

  • The shape of the Sampling Distribution does not reveal anything about the shape of the population.

  • Sampling Distribution helps to estimate the population statistic.

  • Both.

Explicação

Questão 5 de 50

1

Central Limit Theorem states that:

When plotting a sampling distribution of means, the mean of sample means will be equal to the population mean. And the sampling distribution will approach a normal distribution with variance equal to σ/√n where σ is the standard deviation of population and n is the sample size.

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 6 de 50

1

Greater the sample size, lower the standard error and greater the accuracy in determining the population mean from the sample mean?

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 7 de 50

1

No matter the shape of the population distribution, be it bi-modal, right-skewed, etc. The shape of the Sampling Distribution will remain the same (normal curve)?

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 8 de 50

1

For a sampling distribution:

The number of samples has to be sufficient (generally more than 50) to satisfactorily achieve a normal curve distribution. We also have to keep the sample size fixed since any change in sample size will change the shape of the sampling distribution and it will no longer be bell-shaped?

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 9 de 50

1

As we increase the sample size, the sampling distribution squeezes from both sides giving a better estimate of the population statistic since it lies somewhere in the middle of the sampling distribution (generally).

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 10 de 50

1

The confidence interval is a type of interval estimate from the ___________ distribution which gives a range of values in which the population statistic may lie.

Selecione uma das seguintes:

  • Sampling

  • Population

Explicação

Questão 11 de 50

1

The margin of error is a statistic expressing the amount of random sampling error in the results of a survey.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 12 de 50

1

Margin of Error________ the width of Confidence Interval

Selecione uma das seguintes:

  • 1/2

  • 1/4th

Explicação

Questão 13 de 50

1

Which of the following points are true for confidence intervals?

Selecione uma das seguintes:

  • Confidence Intervals can be built with different degrees of confidence suitable to a user’s needs like 70 %, 90% etc.

  • Greater the sample size, smaller the Confidence Interval

  • There are different confidence intervals for different sample means. For example, a sample mean of 40 will have a different confidence interval from a sample mean of 45.

  • 95% Confidence Interval, does not mean that the probability of a population mean to lie in an interval is 95%. Instead, 95% C.I means that 95% of the Interval estimates will contain the population statistic.

  • All of the above.

Explicação

Questão 14 de 50

1

Hypothesis testing lets us identify ________ statistic to be checked against a _________ statistic or statistic of another sample to study any intervention etc.

Selecione uma das seguintes:

  • Sample, Population

  • Population, Sample

Explicação

Questão 15 de 50

1

Null hypothesis is a type of hypothesis in which we assume that sample observations are not by chance. They are affected by some non-random situation. It is denoted by H1 or Ha.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 16 de 50

1

Alternate Hypothesis is a type of hypothesis in which we assume that the sample observations are purely by chance. It is denoted by H0.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 17 de 50

1

Hypothesis Testing is done on different levels of confidence and makes use of z-score to calculate the probability.

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 18 de 50

1

For a 95% Confidence Interval, anything above the z-threshold for 95% would reject the null hypothesis.

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 19 de 50

1

Write down the steps to hypothesis testing.

Selecione uma das seguintes:

  • write your answer down.

  • check them later after the quiz.

Explicação

Questão 20 de 50

1

The significance level, also denoted as alpha or α, is the probability of rejecting the null hypothesis when it is ________.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 21 de 50

1

p-value is the probability of obtaining results at least as extreme as the observed results of a statistical hypothesis test, assuming that the null hypothesis is correct.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 22 de 50

1

Low enough p-value is ground for rejecting the null hypothesis. We reject the null hypothesis if the p-value is less than the significance level?

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 23 de 50

1

Type-1 error: Type 1 error is the case when we fail to reject the null hypothesis but actually it is false. The probability of having a type-1 error is called beta(β).

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 24 de 50

1

Type-2 error: Type 2 error is the case when we reject the null hypothesis but in actual it was true. The probability of having a Type-2 error is called significance level alpha(α).

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 25 de 50

1

For Type 1 and Type 2 error:

α= P (Null hypothesis rejected | Null hypothesis is true)

β= P (Null hypothesis accepted | Null hypothesis is false)

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 26 de 50

1

Power of test is defined as

P= 1- Type-2 error

= 1 – β

Lesser the type-2 error more the power of the hypothesis test.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 27 de 50

1

For a Z - test:

1. A Z-test is mainly used when the data is normally distributed.
2. We find the Z-statistic of the sample means and calculate the z-score.
3. Z-test is mainly used when the population mean and standard deviation are given.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 28 de 50

1

T-tests are similar to the z-scores, the only difference being that instead of the Population Standard Deviation, we use the Sample Standard Deviation?

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 29 de 50

1

Z-tests are statistical calculations that can be used to compare population means to a sample's.

T-tests are calculations used to test a hypothesis, but they are most useful when we need to determine if there is a statistically significant difference between two independent sample groups.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 30 de 50

1

The Degree of Freedom is the number of __________that have the choice of having more than one arbitrary value.

Selecione uma das seguintes:

  • Variable

  • Sample

Explicação

Questão 31 de 50

1

Select the True statement

Selecione uma das seguintes:

  • 1. Greater the difference between the sample mean and the population mean, greater the chance of rejecting the Null Hypothesis.

  • 2. Greater the sample size, greater the chance of rejection of Null Hypothesis.

  • Both

Explicação

Questão 32 de 50

1

One-sample t-test compares the mean of _________ data to a known value.

Selecione uma das seguintes:

  • Sample

  • Population

Explicação

Questão 33 de 50

1

Which of the following points are true for One Sample T- test?

Selecione uma das seguintes:

  • Determine whether the mean of a group differs from the specified value.

  • Calculate a range of values that are likely to include the population mean.

  • We can run a one-sample T-test when we do not have the population S.D. or we have a sample of size less than 30.

  • All of them.

Explicação

Questão 34 de 50

1

We use a two-sample T-test when we want to evaluate whether the mean of the two independent samples is different or not.

Selecione uma das seguintes:

  • False

  • True

Explicação

Questão 35 de 50

1

Two-sample T-test is used to:

Selecione uma das seguintes:

  • Determine whether the means of two independent groups differ.

  • Calculate a range of values that is likely to include the difference between the population means.

  • Both

Explicação

Questão 36 de 50

1

Points to be noted for two sample T-test are:

1. The groups to be tested should be __________
2. The groups’ distribution should not be highly _________.

Selecione uma das seguintes:

  • Independent, Skewed

  • Dependent, Normal

Explicação

Questão 37 de 50

1

A Independent Samples t-test compare the means for ______ different groups?
Samples are __________ of each other?

Selecione uma das seguintes:

  • Two, Independent

  • Same, Dependent

Explicação

Questão 38 de 50

1

A Paired sample t-test compares means from the ______ group at different times?
Samples are _________ on each other?

Selecione uma das seguintes:

  • Same, Dependent

  • Two, Independent

Explicação

Questão 39 de 50

1

ANOVA is used to determine whether there are any statistically significant differences between the means of ________ independent (unrelated) groups.

Selecione uma das seguintes:

  • One

  • Two

  • Three or more

Explicação

Questão 40 de 50

1

A one-way ANOVA has ______ independent variable, while a two-way ANOVA has ______.

Selecione uma das seguintes:

  • One, Two

  • Two, One

Explicação

Questão 41 de 50

1

Write down the steps to perform ANOVA.

Selecione uma das seguintes:

  • Write down the answers

  • Check them later

Explicação

Questão 42 de 50

1

Practical applications of ANOVA in modeling are:

Selecione uma das seguintes:

  • Identifying whether a categorical variable is relevant to a continuous variable.

  • Identifying whether a treatment was effective to the model or not.

  • Both.

Explicação

Questão 43 de 50

1

The Chi-Square Test determines whether there is an association between _______ variables (i.e., whether the variables are independent or related).

Selecione uma das seguintes:

  • Categorical

  • Continuous

Explicação

Questão 44 de 50

1

Goodness of fit: It compares two categorical variables to find whether they are related with each other or not.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 45 de 50

1

Test of Independence: It determines if sample data of categorical variables matches with population or not.

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 46 de 50

1

Regression analysis is a form of predictive modelling technique which investigates the relationship between a ___________ (target) and __________ variable (s) (predictor).

Selecione uma das seguintes:

  • Dependent, Independent

  • Independent, Dependent

Explicação

Questão 47 de 50

1

The regression sum of squares describes how well a regression model represents the modeled data.
A higher regression sum of squares indicates that the model does not fit the data well?

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 48 de 50

1

A residual sum of squares (RSS) is a statistical technique used to measure the amount of_________ in a data set that is not explained by a regression model.

Selecione uma das seguintes:

  • Mean

  • Variance

Explicação

Questão 49 de 50

1

Coefficient of Determination (R-Square): It represents the strength of correlation between two variables?

Selecione uma das seguintes:

  • True

  • False

Explicação

Questão 50 de 50

1

Correlation Coefficients are used to measure how strong a relationship is between two variables?

Selecione uma das seguintes:

  • True

  • False

Explicação