Ce indică coeficientul de corelație?
Direcția legăturii reciproce între două variabile
Variabilitatea valorilor celor două variabile
Centrul distribuției celor două variabile
Intensitatea legăturii reciproce între două variabile
Proporția variabilității unei variabile care poate fi explicată prin variația altei variabile
Ce arată corelograma?
Reprezentarea grafică a corelației
Reprezentarea liniara a corelației
Reprezentarea grafică a dispersiei
Reprezentarea grafică a densitatii
relația reciprocă între două variabile numerice
relatia reciproca intre doua variabile calitative
Precizați denumirea axei X într-o corelogramă:
variabila independentă sau explicativă (argument)
variabila dependentă sau explicativă (argument)
variabila dependentă sau efectul (funcție, răspuns)
variabila independentă sau efectul (funcție, răspuns)
Precizați denumirea axei X într-o corelogramă:
Argument
Factor
independent
explicativ
functie
Precizați denumirea axei Y într-o corelogramă:
variabila dependentă sau efectul (funcție, răspuns) (Y depinde de X)
variabila dependentă sau efectul (funcție, răspuns) (Y nu depinde de X)
Precizați denumirea axei Y într-o corelogramă:
efect
argument
dependenta
independentă
explicativă
Direcția corelației dintre două variabile poate fi:
pozitivă directă
negativă indirectă
nulă
unilaterală
Ce înseamnă corelație pozitivă între două variabile?
Corelațiile directe (pozitive) se stabilesc între fenomene care evoluează în aceeași direcție.
Norul de puncte se împrăștie din colțul din stânga jos până în colțul din dreapta sus.
Corelațiile inverse (negative) se stabilesc între fenomene care evoluează în sens opus.
Norul de puncte se împrăștie din colțul din stânga sus până în colțul din dreapta jos.
Ce înseamnă corelație pozitivă între două variabile?
cu cât valorile lui Y sunt mai mari, cu atât valorile lui X sunt mai mici
cu cât valorile lui X sunt mai mari, cu atât valorile lui Y sunt mai mari
cu cât valorile lui X sunt mai mari, cu atât valorile lui Y sunt mai mici
cu cât valorile lui X sunt mai mici, cu atât valorile lui Y sunt mai mici
variabilele X și Y au doar valori pozitive
Ce înseamnă corelație negativă între două variabile?
Ce înseamnă corelație negativă între două variabile?
variabilele X și Y au doar valori negative
Ce coeficienți de corelație măsoară relația liniară dintre două variabile numerice?
Coeficientul de corelație Pearson
Coeficientul de corelație Spearman
Coeficientul de corelație Willson
Coeficientul de corelație Jacker
În cazul asocierii valorilor mici ale lui X cu valorile mici ale lui Y și valorilor mari ale lui X cu valorile mari ale lui Y, corelația este:
pozitivă
puternică
continuă
negativă
discretă
În cazul asocierii valorilor mici ale lui X cu valorile mici ale lui Y și valorilor mari ale lui X cu valorile mari ale lui Y, corelația este:
Pozitivă (indirectă)
Negativă (inversă)
Pozitivă (directă)
Nulă
În cazul asocierii valorilor mici ale lui X cu valorile mari ale lui Y și valorilor mari ale lui X cu valorile mici ale lui Y, corelația este:
Negativă (directă)
Dacă într-o corelogramă, norul de puncte se întinde din colțul din stânga jos până în colțul din dreapta sus, corelația este:
Corelație lineară, pozitivă
Corelație lineară, negativă
Corelație nonlineară, pozitivă
Corelație lineară, nulă
Dacă într-o corelogramă, norul de puncte se întinde din colțul din stânga sus până în colțul din dreapta jos, corelația este:
Corelație colineară, negativă
În cazul asocierii valorilor mici ale lui X cu valorile mari ale lui Y și valorilor mari ale lui X cu valorile mici ale lui Y, corelația este:
Pentru afirmația „cu cât este mai mare consumul de sare, cu atât este mai mare tensiunea arterială”, corelația este:
. Pentru afirmația „cu cât este mai mare consumul de țigarete, cu atât este mai mică durata medie de viață”, corelația este:
. Precizați condițiile de utilizare a coeficientului de corelație Pearson:
Corelația lineară
Corelația nonlineară
Variabile calitative
Distribuție asimetrică
Precizați condițiile de utilizare a coeficientului de corelație Pearson:
Corelația colineară
Variabile numerice
Distribuție normală (simetrică) pentru ambele variabile
Precizați condițiile de utilizare a coeficientului de corelație Pearson:
două variabile numerice, distribuția normală numai pentru X
două variabile numerice distribuția normală pentru X și Y
două variabile ordinale, distribuția normală pentru X și Y
două variabile numerice, distribuția asimetrică pentru X și Y
două variabile numerice, distribuția normală numai pentru Y
Selectați condițiile de utilizare a coeficientului de corelație al rangurilor Spearman:
corelație liniară
2 variabile ordinale
o variabilă ordinală și una numerică
2 variabile numerice, când una sau ambele sunt asimetrice.
doar peentru variabilele numerice
Selectați condițiile de utilizare a coeficientului de corelație al rangurilor Spearman:
două variabile numerice, distribuția normală pentru Y, asimetrică pentru X
două variabile numerice distribuția normală pentru X, asimetrică pentru Y
două variabile numerice, distribuția normală pentru X și Y
două variabile dihotomice.
Coeficientul de corelație (al rangurilor) Spearman este utilizat pentru următoarele tipuri de date:
două variabile ordinale
două variabile numerice, distribuția asimetrică pentru X și/sau Y
două variabile dihotomice
Coeficientul de corelație Pearson este utilizat pentru următoarele tipuri de date:
două variabile numerice discrete, distribuție normală pentru X și asimetrică pentru Y
O variabilă ordinală și una dihotomică
două variabile numerice continue, distribuție normală pentru X și Y
două variabile numerice discrete, distribuție normală pentru X și Y
Valoarea coeficientului de corelație variază între:
-3 și 3
0 și +1
-2 și +2
-1 și +1
0 și -1