Questão 1
Questão
Sound is a fluctuation of air pressure in [[blank_start]Pa[blank_end]].
Questão 2
Questão
The [blank_start]sound pressure[blank_end] is a local pressure deviation of a compressible sound transmission medium which occur by spreading of sound.
Questão 3
Questão
The human hearing threshold is approximately
Responda
-
20 µPa
-
40 µPa
-
20 Pa
-
40 Pa
-
50 hPa
Questão 4
Questão
The human pain threshold is approximately [blank_start]1.000.000[blank_end] times higher than the hearing threshold.
Questão 5
Questão
The sound [blank_start]frequency[blank_end] is the number of pressure fluctuations per second. Unit: [[blank_start]Hz[blank_end]]
Questão 6
Questão
Speed of sound:
c = [blank_start]lambda[blank_end] * [blank_start]f[blank_end]
Questão 7
Questão
The speed of sound [blank_start]increases[blank_end] with the density of the medium.
Questão 8
Questão
In transition from one medium to another, sound can be
Responda
-
absorbed
-
transmitted
-
reflected
Questão 9
Questão
Sound intensity level:
L = [blank_start]20[blank_end] * [blank_start]log10[blank_end]([blank_start]p[blank_end] / [blank_start]p0[blank_end])
Doubling of p results in an increase of sound intensity by [blank_start]6[blank_end] dB.
Loudness is perceived in a [blank_start]logarithmic[blank_end] gradation.
Responda
-
20
-
10
-
log10
-
log2
-
ln
-
p
-
p0
-
6
-
logarithmic
-
exponential
-
linear
Questão 10
Questão
Humans have their highest sensitivity between [blank_start]1[blank_end] and [blank_start]4[blank_end] [blank_start]kHz[blank_end].
Human speech is roughly between [blank_start]1[blank_end] and [blank_start]2[blank_end] [blank_start]kHz[blank_end].
Responda
-
kHz
-
Hz
-
kHz
-
Hz
-
1
-
2
-
10
-
20
-
4
-
40
-
10
-
20
-
1
-
2
-
10
-
20
-
2
-
20
-
40
-
4
Questão 11
Questão
The communication channel correlates with the [blank_start]body volume[blank_end].
Questão 12
Questão
Hearing range:
Babies: [blank_start]20[blank_end] - [blank_start]20.000[blank_end] Hz
Young adult: ... - [blank_start]15.000[blank_end] Hz
Older people: ... - [blank_start]5.000[blank_end] Hz
Responda
-
20
-
10
-
200
-
100
-
1000
-
20.000
-
40.000
-
10.000
-
15.000
-
5.000
-
2.000
Questão 13
Questão
The external ear consists of the [blank_start]pinna[blank_end] to capture sound and the [blank_start]ear canal[blank_end] to transmit sound.
Questão 14
Questão
Pinna and ear canal amplify frequencies between [blank_start]2 and 4 kHz[blank_end] by a factor of [blank_start]8[blank_end].
This [blank_start]is not[blank_end] uniformly effective for every direction.
Responda
-
is not
-
is
-
2 and 4 kHz
-
1 and 4 kHz
-
8 and 10 kHz
-
2 and 8 kHz
-
8
-
4
-
2
-
16
Questão 15
Questão
External ear and middle ear are separated by the [blank_start]tympanum[blank_end].
Questão 16
Questão
The middle ear is connected to the [blank_start]pharynx[blank_end] (jaw) by the [blank_start]Eustachian tube[blank_end].
Questão 17
Responda
-
tympanum
-
malleus
-
incus
-
stapes
Questão 18
Questão
The middle ear is filled with [blank_start]air[blank_end].
It works as an impedance [blank_start]converter[blank_end] to balance different air pressures between outer and inner ear.
It also allows impedance [blank_start]matching[blank_end] of sound traveling in air to acoustic waves traveling in a system of fluids and membranes in the inner ear.
The area of the tympanum is much [blank_start]bigger[blank_end] than the stapes footplate and the chain of ossicles (malleus, incus, stapes) work as a [blank_start]lever[blank_end].
Responda
-
air
-
converter
-
matching
-
bigger
-
lever
Questão 19
Questão
Besides the sense of hearing the inner ear contains two more organs of perception:
- Sense of linear [blank_start]acceleration[blank_end]
- Sense of [blank_start]rotation[blank_end]
They all use [blank_start]hair cells[blank_end] in [blank_start]fluids[blank_end] to detect sound or balance.
Responda
-
hair cells
-
fluids
-
acceleration
-
rotation
Questão 20
Questão
The labyrinth in the inner ear:
The membranous labyrinth is filled with [blank_start]K+[blank_end] rich [blank_start]endolymph[blank_end].
The bony labyrinth is filled with [blank_start]Na+[blank_end] rich [blank_start]perilymph[blank_end].
The hair cells are contained in the [blank_start]membranous[blank_end] labyrinth.
Responda
-
membranous
-
bony
-
endolymph
-
perilymph
-
K+
-
Cl-
-
Ca2+
-
Na+
Questão 21
Questão
The three scalae of the cochlea
Responda
-
scala vestibuli
-
scala tympani
-
scala media
Questão 22
Questão
Inner hair cells:
- [blank_start]1[blank_end] row
- [blank_start]ca. 3.500[blank_end] cells
- provide [blank_start]neural output[blank_end]
Outer hair cells:
- [blank_start]3[blank_end] rows
- [blank_start]ca. 12.000[blank_end] cells
- provide [blank_start]amplification[blank_end]
Responda
-
1
-
ca. 3.500
-
neural output
-
3
-
ca. 12.000
-
amplification
Questão 23
Questão
There are roughly [blank_start]30.000[blank_end] spiral ganglion cells, which belong to the [blank_start]peripheral[blank_end] nervous system.
Afferent SGC lead to the [blank_start]cochlear nucles[blank_end].
Most afferent SGC innervate [blank_start]exactly 1 IHC[blank_end].
Efferent SGC come from the [blank_start]superior olivary complex[blank_end].
Most efferent SGCs innervate [blank_start]multiple OHCs[blank_end].
Responda
-
30.000
-
20.000
-
3.000
-
200.000
-
peripheral
-
central
-
cochlear nucles
-
exactly 1 IHC
-
superior olivary complex
-
multiple OHCs
Questão 24
Questão
[blank_start]Outer[blank_end] hair cells possess a unique motor protein called [blank_start]prestin[blank_end], which causes them to contract every time they are depolarized.
Questão 25
Questão
The mechanical frequency analysis in the cochlea is done via the basilar membrane.
The base is [blank_start]100µm[blank_end] wide, [blank_start]thick and taut[blank_end] and sensitive to [blank_start]high[blank_end] frequencies.
The apex is [blank_start]500 µm[blank_end] wide, [blank_start]thin and floppy[blank_end] and sensitive to [blank_start]low[blank_end] frequencies.
Different stiffness at different points results in different frequencies creating vibration maxima at different points!
This is a [blank_start]passive[blank_end] frequency analysis.
There are also [blank_start]more[blank_end] hair cells (and therefore a [blank_start]higher[blank_end] resolution) at positions corresponding to low frequencies.
Responda
-
100µm
-
thick and taut
-
high
-
low
-
thin and floppy
-
500 µm
-
passive
-
active
-
more
-
less
-
higher
-
lower
Questão 26
Questão
The hair cells' organelles that respond to fluid motion are called [blank_start]stereocilia[blank_end].
Hair cells cannot create APs but they can induce APs in nerve cells from mechanical energy. When the stereocilia are lifted up [blank_start]K+[blank_end]-channels open and the cells are depolarized causing transmitter release at the synapse to the SGC.
Questão 27
Questão
Ascending pathway
Responda
-
cochlea
-
cochlear nucleus
-
trapezoid body
-
superior olivary complex
-
lateral lemniscus
-
inferior colliculus
-
medial geniculate body
-
auditory cortex
Questão 28
Questão
The descending pathway of the auditory system is possibly involved in selective attention. It uses [blank_start]inhibition[blank_end] by negative feedback.
The pathway is called the [blank_start]olivocochlear[blank_end] pathway.
Questão 29
Questão
Cell types of the cochlear nucleus:
[blank_start]Bushy[blank_end] cells receive input via large [blank_start]excitatory[blank_end] [blank_start]Endbulbs of Held[blank_end] and send output to the [blank_start]superior olivary nucleus[blank_end] via large synapses, called [blank_start]Calyx of Held[blank_end].
Bushy cells have the largest synapses in the brain, which leads to [blank_start]great[blank_end] temporal precision and an [blank_start]exact[blank_end] resolution (1 spike for 1 spike).
Responda
-
Bushy
-
Pyramidal
-
Held
-
excitatory
-
inhibitory
-
Endbulbs of Held
-
Calyx of Held
-
superior olivary nucleus
-
inferior colliculus
-
lateral lemniscus
-
Calyx of Held
-
Endbulbs of Held
-
great
-
poor
-
exact
-
imprecise
Questão 30
Questão
Tonotopy is not only found in the cochlear nucleus or the superior olivary complex but preserved all the way to the primary auditory cortex.
Questão 31
Questão
Two cues are used for sound localization:
ILD: [blank_start]Interaural level difference[blank_end]
ITD: [blank_start]Interaural time difference[blank_end]
ILD works best for [blank_start]low[blank_end] frequencies
ITD works best for [blank_start]high[blank_end] frequences
Questão 32
Questão
Which brain regions are important for sound localization?
Responda
-
Lateral superior olive
-
Medial superior olive
-
Inferior colliculus
-
Cochlear nucleus
-
Trapezoid body
-
Lateral lemniscus
-
Medial geniculate body
-
Auditory Cortex
Questão 33
Questão
Neurons in the lateral superior olive (LSO) are most sensitive to [blank_start]high[blank_end] frequencies and [blank_start]mainly[blank_end] responsible for [blank_start]ILD[blank_end] detection.
They integrate [blank_start]excitatory[blank_end] signals from the ipsilateral ear with [blank_start]inhibitory[blank_end] input from the contralateral ear.
The ILD [blank_start]can[blank_end] be analyzed frequency-specific.
Neurons in the medial superior olive (MSO) are most sensitive to [blank_start]low[blank_end] frequencies and responsible for [blank_start]ITD[blank_end] detection.
One model to explain this mechanism is the [blank_start]Jeffress Model[blank_end].
Responda
-
high
-
mainly
-
exclusively
-
ILD
-
excitatory
-
inhibitory
-
can
-
cannot
-
low
-
ITD
-
Jeffress Model
-
Held Model
-
Ranvier Model
Questão 34
Questão
The Jeffress Model
Which neuron will fire if the sound comes from midright?
Questão 35
Questão
Sound localization:
There is strong evidence for the Jeffress Model for ITD processing in [blank_start]birds[blank_end].
In mammals it is called into question, e.g. by the fact that [blank_start]the MSO receives also inhibitory input[blank_end].
Responda
-
birds
-
reptils
-
mammals
-
fish
-
the MSO receives also inhibitory input
-
the LSO receives also inhibitory input
-
the MSO is not capable of summation
-
the LSO is not capable of summation
Questão 36
Questão
Primary auditory cortex (A1): Brodman [blank_start]41[blank_end] and [blank_start]42[blank_end]
Questão 37
Questão
Auditory belt areas (including secondary auditory cortex A2) are [blank_start]less[blank_end] precise in their tonotopic organization.
They process [blank_start]combinations of[blank_end] frequencies and temporal sequences of sound.
A2 includes [blank_start]Wernicke's area[blank_end].
Responda
-
Wernicke's area
-
Broca's area
-
less
-
also
-
combinations of
-
isolated
Questão 38
Questão
During development the synaptic density peaks at [blank_start]2-4[blank_end] years.
After that the brain needs to specialize its functions.
In juveniles synaptic potentials have a [blank_start]longer[blank_end] duration and synaptic plasticity is [blank_start]higher[blank_end].
Responda
-
2-4
-
1-2
-
4-6
-
longer
-
shorter
-
higher
-
lower
Questão 39
Questão
Continuous noise input during the critical period of development result in a [blank_start]disrupted[blank_end] tonotopic organization and a degraded [blank_start]frequency response selectivity[blank_end] for neurons in the adult auditory cortex.
Questão 40
Questão
There are two types of hearing loss:
(1) [blank_start]Conductive[blank_end] hearing loss:
- damage of tympanic membrane
- occlusion of the ear canal
(2) [blank_start]Sensory-neural[blank_end] hearing loss:
- damage to hair cells
- damage to auditory nerve
Responda
-
Conductive
-
Sensory-neural
Questão 41
Questão
The most common cause for hearing loss is
Responda
-
a loss of hair cells.
-
damage to the auditory nerve.
-
an occlusion of the mid ear canal.
-
damage to the tympanic membrane.
Questão 42
Questão
Early hearing loss leads to
(1) [blank_start]Delayed[blank_end] development with synaptic [blank_start]overshoot[blank_end]
(2) [blank_start]Increased[blank_end] elimination of synaptic function
Responda
-
Delayed
-
Premature
-
overshoot
-
undershoot
-
Increased
-
Less
Questão 43
Questão
Patients with a cochlear implant can often get the [blank_start]rhythm[blank_end] of a piece of music but have great difficulty recognizing a [blank_start]melody[blank_end].
Questão 44
Questão
The problem with bilateral cochlear implants is
(a) [blank_start]their limited range[blank_end] which limits ILD coding
(b) [blank_start]lack of synchronization of the implants[blank_end] which limits ITD coding
Questão 45
Questão
Components of a cochlear implant:
[blank_start]Microphone[blank_end] --> [blank_start]Sound processor[blank_end] --> [blank_start]Transmitter[blank_end] --> [blank_start]Receiver[blank_end] --> [blank_start]Electrode array[blank_end]
Responda
-
Microphone
-
Sound processor
-
Transmitter
-
Receiver
-
Electrode array
Questão 46
Questão
The ratio of tympanum vs. [blank_start]stapes[blank_end] foot plate is [blank_start]17[blank_end]:1.
The leverage effect is [blank_start]1.3[blank_end].
Responda
-
stapes
-
malleus
-
incus
-
17
-
20
-
13
-
1.3
-
3.1
-
1.7
Questão 47
Questão
The cochlea has [blank_start]2.5[blank_end] coils and its length can vary between [blank_start]28 and 41[blank_end] mm.
Responda
-
2.5
-
2
-
3
-
3.5
-
28 and 41
-
30 and 45
-
15 and 38
Questão 48
Questão
Outer hair cells [blank_start]contract[blank_end] upon depolarization due to their motor protein [blank_start]prestin[blank_end].
Inner hair cells release [blank_start]glutamate[blank_end] upon depolarization.
Responda
-
prestin
-
contract
-
glutamate
Questão 49
Questão
The Organ of Corti is located in the scala [blank_start]media[blank_end] and contains the [blank_start]basilar[blank_end] and the [blank_start]tectorial[blank_end] membrane (alphabetic order). The hair cells are located on the [blank_start]basilar[blank_end] membrane.
Responda
-
media
-
basilar
-
tectorial
-
basilar
Questão 50
Questão
The hair cells are [blank_start]logarithmically[blank_end] distributed on the [blank_start]basilar[blank_end] membrane. More hair cells are located towards the [blank_start]apex[blank_end] where [blank_start]low[blank_end] frequencies are coded.
Responda
-
logarithmically
-
exponentially
-
linearly
-
basilar
-
tectorial
-
apex
-
base
-
low
-
high
Questão 51
Questão
Inner hair cells contain stretch-activated [blank_start]K+[blank_end] channels. Upon depolarization voltage-gated [blank_start]Ca2+[blank_end] channels open and lead to the release of [blank_start]glutamate[blank_end].
Responda
-
K+
-
Na+
-
Ca2+
-
Ca2+
-
K+
-
Na+
-
glutamate
-
dopamine
-
glycine
-
GABA
Questão 52
Questão
Cochlear hair cells have [blank_start]v[blank_end]-shaped [blank_start]tuning[blank_end] curves that describe their best frequencies.
Questão 53
Questão
Bushy cells improve [blank_start]phase locking[blank_end] compared to the signals that come from the auditory nerve.
Questão 54
Questão
The Jeffress model contains a [blank_start]delay-line[blank_end] and a [blank_start]coincidence[blank_end] detector.
It is called into question because the medial superior olive receives inhibitory [blank_start]glycine[blank_end] input.
Responda
-
glycine
-
delay-line
-
coincidence
Questão 55
Questão
There are studies about the regeneration of hair cells upon the [blank_start]adenoviral[blank_end] expression of Atoh1/Math1.