Graph Theory

Descrição

Bachelors Degree Mathematics Quiz sobre Graph Theory, criado por Will Rickard em 04-01-2016.
Will Rickard
Quiz por Will Rickard, atualizado more than 1 year ago
Will Rickard
Criado por Will Rickard quase 9 anos atrás
1091
3

Resumo de Recurso

Questão 1

Questão
What is the formal name for the points on a graph?
Responda
  • Vertices
  • Edges

Questão 2

Questão
What is the formal name for the lines connecting the points on a graph?
Responda
  • Vertices
  • Edges

Questão 3

Questão
V = [blank_start]{a,b,c,d,e}[blank_end]
Responda
  • {a,b,c,d,e}

Questão 4

Questão
E = [blank_start]{{a, b}, {b, c}, {a, c}, {c, d}}[blank_end]
Responda
  • {{a, b}, {b, c}, {a, c}, {c, d}}

Questão 5

Questão
Two graphs are equal if and only if they have the same vertices and the same edges.
Responda
  • True
  • False

Questão 6

Questão
Two graphs are equal if and only if they have some vertices and the same edges.
Responda
  • True
  • False

Questão 7

Questão
We say that two graphs G and H are [blank_start]isomorphic[blank_end] if we can relabel the vertices of G to obtain H.
Responda
  • isomorphic

Questão 8

Questão
The [blank_start]order[blank_end] of a graph G is the number of vertices of G
Responda
  • order

Questão 9

Questão
The order of a graph G is the number of [blank_start]vertices[blank_end] of G
Responda
  • vertices

Questão 10

Questão
The [blank_start]size[blank_end] of G is the number of edges of G
Responda
  • size

Questão 11

Questão
The size of G is the number of [blank_start]edges[blank_end] of G
Responda
  • edges

Questão 12

Questão
We often write [blank_start]uv[blank_end] as shorthand for an edge {u,v}
Responda
  • uv
  • {uv}

Questão 13

Questão
We often write uv as shorthand for an edge {[blank_start]u, v[blank_end]}
Responda
  • u,v

Questão 14

Questão
We say that an edge e = uv is [blank_start]incident[blank_end] to the vertices u and v.
Responda
  • incident
  • adjacent

Questão 15

Questão
If uv is an edge, we say that the vertices u and v are [blank_start]adjacent[blank_end]
Responda
  • adjacent
  • incident

Questão 16

Questão
u is a [blank_start]neighbour[blank_end] of v and that v is a neighbour of u.
Responda
  • neighbour

Questão 17

Questão
For any vertex v of a graph G, the [blank_start]neighbourhood[blank_end] N(v) of v is the set of neighbours of v
Responda
  • neighbourhood

Questão 18

Questão
For any vertex v of a graph G, the ............. of v is the set of neighbours of v
Responda
  • neighbourhood N(v)
  • neighbourhood N(u)
  • compliment N(v)
  • neighbourhood G(v)
  • neighbourhood d(v)
  • neighbourhood N(G)

Questão 19

Questão
We say that v is isolated if it has no [blank_start]neighbours[blank_end].
Responda
  • neighbours

Questão 20

Questão
We say that v is [blank_start]isolated[blank_end] if it has no neighbours.
Responda
  • isolated
  • complementary
  • distinct
  • incident
  • adjacent

Questão 21

Questão
The neighbourhood of a is N(a) = [blank_start]{b, c}[blank_end]
Responda
  • {b, c}

Questão 22

Questão
The neighbourhood of d is N (d) = [blank_start]{c}[blank_end]
Responda
  • {c}

Questão 23

Questão
The neighbourhood of e is N(e) = [blank_start]empty[blank_end]
Responda
  • empty

Questão 24

Questão
Vertex e is ........ vertex
Responda
  • an isolated
  • an adjacent
  • a

Questão 25

Questão
Vertex e is an [blank_start]isolated[blank_end] vertex
Responda
  • isolated

Questão 26

Questão
The degree of a vertex v in a graph G is d(v) = |N(v)|, that is,
Responda
  • The number of neighbours of v
  • The number of edges of v
  • The number of vertices of v
  • The number of v

Questão 27

Questão
d(v) =
Responda
  • |N(v)|
  • |G(v)|
  • 0

Questão 28

Questão
The vertex degrees are d(a) = [blank_start]2[blank_end], d(b) = [blank_start]2[blank_end], d(c) = [blank_start]3[blank_end], d(d) = [blank_start]1[blank_end] d(e) = [blank_start]0[blank_end].
Responda
  • 2
  • 2
  • 3
  • 1
  • 0

Questão 29

Questão
If G is a graph with n vertices, then the degree of each vertex of G is an integer between 0 and n − 1.
Responda
  • True
  • False

Questão 30

Questão
If G is a graph with n vertices, then the degree of each vertex of G is an integer between [blank_start]0[blank_end] and [blank_start]n − 1[blank_end].
Responda
  • 0
  • n − 1

Questão 31

Questão
If G is a graph with n vertices, then the [blank_start]degree[blank_end] of each vertex of G is an integer between 0 and n − 1.
Responda
  • degree

Questão 32

Questão
The sum of all vertex degrees is twice the number of edges
Responda
  • True
  • False

Questão 33

Questão
the sum of all vertex degrees is [blank_start]twice[blank_end] the number of edges
Responda
  • twice

Questão 34

Questão
The sum of all vertex degrees is twice the number of [blank_start]edges[blank_end]
Responda
  • edges

Questão 35

Questão
The sum of all vertex [blank_start]degrees[blank_end] is twice the number of edges
Responda
  • degrees

Questão 36

Questão
In any graph there are an even number of vertices with odd degree.
Responda
  • True
  • False

Questão 37

Questão
In any graph there are an even number of edges with odd degree.
Responda
  • True
  • False

Questão 38

Questão
Any graph on at least two vertices has two vertices of the same [blank_start]degree[blank_end].
Responda
  • degree

Questão 39

Questão
The [blank_start]degree sequence[blank_end] of a graph G is the sequence of all degrees of vertices in G
Responda
  • degree sequence

Questão 40

Questão
The [blank_start]minimum degree[blank_end] of a graph G, denoted δ(G), is the [blank_start]smallest[blank_end] degree of a vertex of G.
Responda
  • minimum degree
  • smallest

Questão 41

Questão
The [blank_start]maximum degree[blank_end] of a graph G, denoted ∆(G), is the [blank_start]largest degree[blank_end] of a vertex of G.
Responda
  • maximum degree
  • largest degree

Questão 42

Questão
A graph G is [blank_start]regular[blank_end] if every vertex of G has the same degree
Responda
  • regular

Questão 43

Questão
We say that G is k-regular to mean that every vertex has degree k.
Responda
  • True
  • False

Questão 44

Questão
We say that G is [blank_start]k[blank_end]-regular to mean that every vertex has degree k.
Responda
  • k

Questão 45

Questão
We say that G is [blank_start]k-regular[blank_end] to mean that every vertex has degree k.
Responda
  • k-regular

Questão 46

Questão
A graph H is a [blank_start]subgraph[blank_end] of a graph G if we can obtain H by deleting vertices and edges of G.
Responda
  • subgraph

Questão 47

Questão
A graph H is a subgraph of a graph G if we can obtain H by [blank_start]deleting[blank_end] vertices and edges of G
Responda
  • deleting

Questão 48

Questão
H is a [blank_start]spanning[blank_end] subgraph of G if additionally V (H) = V (G), that is, if only edges were deleted.
Responda
  • spanning
  • "blank"
  • copy

Questão 49

Questão
H is a [blank_start]subgraph[blank_end] of a graph G if we can obtain H by deleting vertices and edges of G.
Responda
  • subgraph
  • graph
  • spanning subgraph
  • copy

Questão 50

Questão
Let G be a graph with δ(G) ≥ 2. Then G contains a cycle.
Responda
  • True
  • False

Questão 51

Questão
Let G be a graph with δ(G) ≥ 0. Then G contains a cycle.
Responda
  • True
  • False

Questão 52

Questão
Let G be a graph with N(G) ≥ 2. Then G contains a cycle.
Responda
  • True
  • False

Questão 53

Questão
Any graph with n vertices and at least n edges contains a cycle
Responda
  • True
  • False

Questão 54

Questão
Any graph with n vertices and at least n-1 edges contains a cycle
Responda
  • True
  • False

Questão 55

Questão
Any graph with n+1 vertices and at least n edges contains a cycle
Responda
  • True
  • False

Questão 56

Questão
The length of W is the number of [blank_start]edges[blank_end] traversed
Responda
  • edges
  • vertices

Questão 57

Questão
A walk is closed if the first and last vertices of the walk are the same, that is, if you finish at the same vertex at which you started.
Responda
  • True
  • False

Questão 58

Questão
A walk is open if the first and last vertices of the walk are the same, that is, if you finish at the same vertex at which you started.
Responda
  • True
  • False

Questão 59

Questão
A walk is a path if and only if it has no repeated vertices
Responda
  • True
  • False

Questão 60

Questão
walk is a path if and only if it has repeated vertices
Responda
  • True
  • False

Questão 61

Questão
A closed walk is a cycle if and only if the only repeated vertex is the first and last vertex
Responda
  • True
  • False

Questão 62

Questão
A closed walk is a cycle if and only if there is a repeated vertex at the first and last vertex
Responda
  • True
  • False

Questão 63

Questão
A graph G is [blank_start]connected[blank_end] if for any two vertices u and v of G there is a walk in G from u to v.
Responda
  • connected

Questão 64

Questão
A [blank_start]connected component[blank_end] of G is a maximal connected subgraph of G
Responda
  • connected component
  • component
  • subgraph
  • tree
  • cycle

Questão 65

Questão
A tree is a [blank_start]connected[blank_end] [blank_start]acyclic[blank_end] graph.
Responda
  • connected
  • component
  • walk
  • path
  • unconnected
  • join
  • acyclic
  • walks
  • paths
  • cyclic

Questão 66

Questão
A [blank_start]leaf[blank_end] of a tree is a vertex v with d(v) = [blank_start]1[blank_end].
Responda
  • leaf
  • edge
  • vertex
  • 1
  • 2
  • 0
  • 5

Questão 67

Questão
Any tree on n ≥ 2 vertices has a leaf.
Responda
  • True
  • False

Questão 68

Questão
Any tree on n ≥ 0 vertices has a leaf.
Responda
  • True
  • False

Questão 69

Questão
Any connected graph contains a spanning tree
Responda
  • True
  • False

Questão 70

Questão
Any connected graph on n vertices with precisely n − 1 edges is a tree
Responda
  • True
  • False

Questão 71

Questão
Any connected graph on n vertices with precisely n edges is a tree
Responda
  • True
  • False

Questão 72

Questão
Any acyclic graph on n vertices with precisely n − 1 edges is a tree.
Responda
  • True
  • False

Questão 73

Questão
Any acyclic graph on n vertices with precisely n edges is a tree.
Responda
  • True
  • False

Semelhante

The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Projectiles
Alex Burden
Mathematics Overview
PatrickNoonan
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary