Questão 1
Questão
What is the formal name for the points on a graph?
Questão 2
Questão
What is the formal name for the lines connecting the points on a graph?
Questão 3
Questão
V = [blank_start]{a,b,c,d,e}[blank_end]
Questão 4
Questão
E = [blank_start]{{a, b}, {b, c}, {a, c}, {c, d}}[blank_end]
Responda
-
{{a, b}, {b, c}, {a, c}, {c, d}}
Questão 5
Questão
Two graphs are equal if and only if they have the same vertices and the same edges.
Questão 6
Questão
Two graphs are equal if and only if they have some vertices and the same edges.
Questão 7
Questão
We say that two graphs G and H are [blank_start]isomorphic[blank_end] if we can relabel the vertices of G to obtain H.
Questão 8
Questão
The [blank_start]order[blank_end] of a graph G is the number of vertices of G
Questão 9
Questão
The order of a graph G is the number of [blank_start]vertices[blank_end] of G
Questão 10
Questão
The [blank_start]size[blank_end] of G is the number of edges of G
Questão 11
Questão
The size of G is the number of [blank_start]edges[blank_end] of G
Questão 12
Questão
We often write [blank_start]uv[blank_end] as shorthand for an edge {u,v}
Questão 13
Questão
We often write uv as shorthand for an edge {[blank_start]u, v[blank_end]}
Questão 14
Questão
We say that an edge e = uv is [blank_start]incident[blank_end] to the vertices u and v.
Questão 15
Questão
If uv is an edge, we say that the vertices u and v are [blank_start]adjacent[blank_end]
Questão 16
Questão
u is a [blank_start]neighbour[blank_end] of v and that v is a neighbour of u.
Questão 17
Questão
For any vertex v of a graph G, the [blank_start]neighbourhood[blank_end] N(v) of v is the set of neighbours of v
Questão 18
Questão
For any vertex v of a graph G, the ............. of v is the set of neighbours of v
Responda
-
neighbourhood N(v)
-
neighbourhood N(u)
-
compliment N(v)
-
neighbourhood G(v)
-
neighbourhood d(v)
-
neighbourhood N(G)
Questão 19
Questão
We say that v is isolated if it has no [blank_start]neighbours[blank_end].
Questão 20
Questão
We say that v is [blank_start]isolated[blank_end] if it has no neighbours.
Responda
-
isolated
-
complementary
-
distinct
-
incident
-
adjacent
Questão 21
Questão
The neighbourhood of a is N(a) = [blank_start]{b, c}[blank_end]
Questão 22
Questão
The neighbourhood of d is N (d) = [blank_start]{c}[blank_end]
Questão 23
Questão
The neighbourhood of e is N(e) = [blank_start]empty[blank_end]
Questão 24
Questão
Vertex e is ........ vertex
Responda
-
an isolated
-
an adjacent
-
a
Questão 25
Questão
Vertex e is an [blank_start]isolated[blank_end] vertex
Questão 26
Questão
The degree of a vertex v in a graph G is d(v) = |N(v)|, that is,
Questão 27
Questão 28
Questão
The vertex degrees are
d(a) = [blank_start]2[blank_end],
d(b) = [blank_start]2[blank_end],
d(c) = [blank_start]3[blank_end],
d(d) = [blank_start]1[blank_end]
d(e) = [blank_start]0[blank_end].
Questão 29
Questão
If G is a graph with n vertices, then the degree of each vertex of G is an integer between 0 and n − 1.
Questão 30
Questão
If G is a graph with n vertices, then the degree of each vertex of G is an integer between [blank_start]0[blank_end] and [blank_start]n − 1[blank_end].
Questão 31
Questão
If G is a graph with n vertices, then the [blank_start]degree[blank_end] of each vertex of G is an integer between 0 and n − 1.
Questão 32
Questão
The sum of all vertex degrees is twice the number of edges
Questão 33
Questão
the sum of all vertex degrees is [blank_start]twice[blank_end] the number of edges
Questão 34
Questão
The sum of all vertex degrees is twice the number of [blank_start]edges[blank_end]
Questão 35
Questão
The sum of all vertex [blank_start]degrees[blank_end] is twice the number of edges
Questão 36
Questão
In any graph there are an even number of vertices with odd degree.
Questão 37
Questão
In any graph there are an even number of edges with odd degree.
Questão 38
Questão
Any graph on at least two vertices has two vertices of the same [blank_start]degree[blank_end].
Questão 39
Questão
The [blank_start]degree sequence[blank_end] of a graph G is the sequence of all degrees of vertices in G
Questão 40
Questão
The [blank_start]minimum degree[blank_end] of a graph G, denoted δ(G), is the [blank_start]smallest[blank_end] degree of a vertex of G.
Questão 41
Questão
The [blank_start]maximum degree[blank_end] of a graph G, denoted ∆(G), is the [blank_start]largest degree[blank_end] of a vertex of G.
Responda
-
maximum degree
-
largest degree
Questão 42
Questão
A graph G is [blank_start]regular[blank_end] if every vertex of G has the same degree
Questão 43
Questão
We say that G is k-regular to mean that every vertex has degree k.
Questão 44
Questão
We say that G is [blank_start]k[blank_end]-regular to mean that every vertex has degree k.
Questão 45
Questão
We say that G is [blank_start]k-regular[blank_end] to mean that every vertex has degree k.
Questão 46
Questão
A graph H is a [blank_start]subgraph[blank_end] of a graph G if we can obtain H by deleting vertices and edges of G.
Questão 47
Questão
A graph H is a subgraph of a graph G if we can obtain H by [blank_start]deleting[blank_end] vertices and edges of G
Questão 48
Questão
H is a [blank_start]spanning[blank_end] subgraph of G if additionally V (H) = V (G), that is, if only edges were deleted.
Questão 49
Questão
H is a [blank_start]subgraph[blank_end] of a graph G if we can obtain H by deleting vertices and edges of G.
Responda
-
subgraph
-
graph
-
spanning subgraph
-
copy
Questão 50
Questão
Let G be a graph with δ(G) ≥ 2. Then G contains a cycle.
Questão 51
Questão
Let G be a graph with δ(G) ≥ 0. Then G contains a cycle.
Questão 52
Questão
Let G be a graph with N(G) ≥ 2. Then G contains a cycle.
Questão 53
Questão
Any graph with n vertices and at least n edges contains a cycle
Questão 54
Questão
Any graph with n vertices and at least n-1 edges contains a cycle
Questão 55
Questão
Any graph with n+1 vertices and at least n edges contains a cycle
Questão 56
Questão
The length of W is the number of [blank_start]edges[blank_end] traversed
Questão 57
Questão
A walk is closed if the first and last vertices of the walk are the same, that is, if you finish at the same vertex at which you started.
Questão 58
Questão
A walk is open if the first and last vertices of the walk are the same, that is, if you finish at the same vertex at which you started.
Questão 59
Questão
A walk is a path if and only if it has no repeated vertices
Questão 60
Questão
walk is a path if and only if it has repeated vertices
Questão 61
Questão
A closed walk is a cycle if and only if the only repeated vertex is the first and last vertex
Questão 62
Questão
A closed walk is a cycle if and only if there is a repeated vertex at the first and last vertex
Questão 63
Questão
A graph G is [blank_start]connected[blank_end] if for any two vertices u and v of G there is a walk in G from u to v.
Questão 64
Questão
A [blank_start]connected component[blank_end] of G is a maximal connected subgraph of G
Responda
-
connected component
-
component
-
subgraph
-
tree
-
cycle
Questão 65
Questão
A tree is a [blank_start]connected[blank_end] [blank_start]acyclic[blank_end] graph.
Responda
-
connected
-
component
-
walk
-
path
-
unconnected
-
join
-
acyclic
-
walks
-
paths
-
cyclic
Questão 66
Questão
A [blank_start]leaf[blank_end] of a tree is a vertex v with d(v) = [blank_start]1[blank_end].
Questão 67
Questão
Any tree on n ≥ 2 vertices has a leaf.
Questão 68
Questão
Any tree on n ≥ 0 vertices has a leaf.
Questão 69
Questão
Any connected graph contains a spanning tree
Questão 70
Questão
Any connected graph on n vertices with precisely n − 1 edges is a tree
Questão 71
Questão
Any connected graph on n vertices with precisely n edges is a tree
Questão 72
Questão
Any acyclic graph on n vertices with precisely n − 1 edges is a tree.
Questão 73
Questão
Any acyclic graph on n vertices with precisely n edges is a tree.