Normal Approximation

Descrição

A-Levels Further Mathematics Quiz sobre Normal Approximation, criado por Alex Burden em 13-04-2017.
Alex Burden
Quiz por Alex Burden, atualizado more than 1 year ago
Alex Burden
Criado por Alex Burden mais de 7 anos atrás
26
0

Resumo de Recurso

Questão 1

Questão
What is the formula for a Normal Approximation to the Binomial?
Responda
  • X~Bin(n,p)
  • X~N(np,npq)
  • X~U(a,b)

Questão 2

Questão
What is the formula for the Normal Approximation to the Poisson?
Responda
  • X~N(λ,λ)
  • X~Po(λ)
  • X~N(μ,σ^2)

Questão 3

Questão
A Continuity Correction must be used with both Binomial and Poisson.
Responda
  • True
  • False

Questão 4

Questão
When doing Continuity Corrections, standardising is not important.
Responda
  • True
  • False

Questão 5

Questão
For a Continuity Correction for a Normal Approx. to the Binomial, n must be greater than [blank_start]50[blank_end] and p must be between [blank_start]0.1 and 0.9[blank_end]
Responda
  • 50
  • 30
  • 100
  • 0.01 and 0.09
  • 0.05 and 0.15
  • 0.1 and 0.9

Questão 6

Questão
Examples of standardising for Binomial: P(7≤X≥9) → P([blank_start]6.5<X>9.5[blank_end]) P(5<X>8) → P([blank_start]5.5<X>7.5[blank_end])
Responda
  • 6.5<X>9.5
  • 7.5<X>8.5
  • 4.5<X>7.5
  • 5.5<X>7.5
  • 4.5<X>8.5
  • 6.5≤X≥9.5

Questão 7

Questão
What must both values equal for a Continuity Correction for the Normal Approx. to the Poisson?
Responda
  • λ
  • n
  • μ

Questão 8

Questão
Examples of standardising for the Poisson: P(X<34) → P(X[blank_start]<33.5[blank_end]) P(X[blank_start]>40[blank_end]) → P(X>40.5) P(X=38) → P([blank_start]37.5<X>38.5[blank_end]) P(X[blank_start]≤64[blank_end]) → P(X<64.5) P(X≥25) → P(X[blank_start]>24.5[blank_end])
Responda
  • <33.5
  • <34.5
  • ≥40
  • >41
  • >40
  • 37.5≤X≥38.5
  • 37.5<X>38.5
  • ≤64
  • <64
  • ≤65
  • >25.5
  • >24.5
  • ≥24.5
  • ≤33.5

Semelhante

Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
GCSE Maths: Geometry & Measures
Andrea Leyden
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan
New GCSE Maths
Sarah Egan
Maths GCSE - What to revise!
livvy_hurrell
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell