Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.
Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a ? R* e b e c ? R.
Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.
Veja alguns exemplos de Função do 2º grau:f(x) = 5x2 – 2x + 8; a = 5, b = – 2 e c = 8 (Completa)
f(x) = x2 – 2x; a = 1, b = – 2 e c = 0 (Incompleta)
f(x) = – x2; a = –1, b = 0 e c = 0 (Incompleta)
Zero e Equação do 2º Grau
Chama-se zeros ou raízes da função polinomial do 2º grau f(x) = ax2 + bx + c , a 0, os números reais x tais que f(x) = 0.
Então as raízes da função f(x) = ax2 + bx + c são as soluções da equação do 2º grau ax2 + bx + c = 0, as quais são dadas pela chamada fórmula de Bhaskara:
Temos:
Observação
A quantidade de raízes reais de uma função quadrática depende do valor obtido para o radicando , chamado discriminante, a saber:
quando é positivo, há duas raízes reais e distintas;
quando é zero, há só uma raiz real (para ser mais preciso, há duas raízes iguais);
quando é negativo, não há raiz real.
Quer criar seus próprios Slidesgratuitos com a GoConqr? Saiba mais.