null
US
Sign In
Sign Up for Free
Sign Up
We have detected that Javascript is not enabled in your browser. The dynamic nature of our site means that Javascript must be enabled to function properly. Please read our
terms and conditions
for more information.
Next up
Copy and Edit
You need to log in to complete this action!
Register for Free
38427889
Prova Circunferência e Elipse
Description
Prova sobre circunferência e elipse
No tags specified
circunferência
elipse
cálculo vetorial e geometria analítica
ensino superior
Quiz by
BOTE FÉ NA MATEMÁTICA
, updated more than 1 year ago
More
Less
Created by
BOTE FÉ NA MATEMÁTICA
almost 2 years ago
4
0
0
Resource summary
Question 1
Question
Encontre a equação da elipse cujos focos são \(F_1(-1, -3)\) e \(F_2(-1, 5)\) e excentricidade \(\frac{2}{3}\).
Answer
\(\frac{(x+1)^2}{20}+\frac{(y-1)^2}{36}=1\)
\(\frac{(x+1)^2}{36}+\frac{(y-1)^2}{20}=1\)
\(\frac{(x+1)^2}{5}+\frac{(y-1)^2}{9}=1\)
\(\frac{(x+1)^2}{9}+\frac{(y-1)^2}{5}=1\)
\(\frac{(x-1)^2}{20}+\frac{(y+1)^2}{36}=1\)
Question 2
Question
Encontre a equação da elipse cujos focos são \(F_1(1, -3)\) e \(F_2(1, 5)\) e excentricidade \(\frac{2}{3}\).
Answer
\(\frac{(x-1)^2}{20}+\frac{(y-1)^2}{36}=1\)
\(\frac{(x-1)^2}{36}+\frac{(y-1)^2}{20}=1\)
\(\frac{(x-1)^2}{5}+\frac{(y-1)^2}{9}=1\)
\(\frac{(x-1)^2}{9}+\frac{(y-1)^2}{5}=1\)
\(\frac{(x+1)^2}{20}+\frac{(y+1)^2}{36}=1\)
Question 3
Question
Encontre a equação da elipse cujos focos são \(F_1(-3, -1)\) e \(F_2(5, -1)\) e excentricidade \(\frac{2}{3}\).
Answer
\(\frac{(x-1)^2}{36}+\frac{(y+1)^2}{20}=1\)
\(\frac{(x-1)^2}{9}+\frac{(y+1)^2}{5}=1\)
\(\frac{(x-1)^2}{20}+\frac{(y+1)^2}{36}=1\)
\(\frac{(x-1)^2}{5}+\frac{(y+1)^2}{9}=1\)
\(\frac{(x+1)^2}{36}+\frac{(y-1)^2}{20}=1\)
Question 4
Question
Marque a alternativa que tem os focos da elipse com dois vértices \(A_1(3, -4)\) e \(A_2(3, 4)\) e distância focal 4.
Answer
\(F_1(3, 2)\) e \(F_2(3, -2)\)
\(F_1(2, 3)\) e \(F_2(-2, 3)\)
\(F_1(3, 4)\) e \(F_2(3, -4)\)
\(F_1(4, 3)\) e \(F_2(-4, 3)\)
Question 5
Question
Marque a alternativa que tem os focos da elipse com dois vértices \(A_1(1, -4)\) e \(A_2(1, 4)\) e distância focal 4.
Answer
\(F_1(1, 2)\) e \(F_2(1, -2)\)
\(F_1(2, 1)\) e \(F_2(-2, 1)\)
\(F_1(1, 4)\) e \(F_2(1, -4)\)
\(F_1(4, 1)\) e \(F_2(1, -2)\)
Question 6
Question
Dada a circunferência de equação \(x^2+y^2-6x = -5\), marque a alternativa que fornece o raio e o centro dessa circunferência.
Answer
\(r=2\) e C = (3, 0)
\(r=2\) e C = (0, 3)
\(r=4\) e C = (3, 0)
\(r=4\) e C = (0, 3)
Question 7
Question
Marque a alternativa que fornece a equação da circunferência dada na imagem
Image:
Questao+Prova (binary/octet-stream)
Answer
\((x+3)^2 + (y-3)^2 = 18\)
\((x-3)^2 + (y+3)^2 = 18\)
\((x+3)^2 + (y-3)^2 = 3\sqrt{2}\)
\((x-3)^2 + (y+3)^2 = 3\sqrt{2}\)
Show full summary
Hide full summary
Want to create your own
Quizzes
for
free
with GoConqr?
Learn more
.
Similar
Reposição Prova 3 Vetorial
BOTE FÉ NA MATEMÁTICA
Geometria Analítica
ANA PAULA FREIRE DA SILVA
Cônicas
Daniel Santos
Circunferência, arcos radiano
Thais Maria
A-Level History: Nazi Germany
cian.buckley+1
01 Long Term causes of the French Revolution
Holly Lovering
HSC Maths: Algebra Quiz
Brad Hegarty
An Inspector calls - Gerald Croft
Rattan Bhorjee
GCSE AQA Biology 2 Cells & Diffusion
Lilac Potato
chemsitry as level topic 5 moles and equations
Talya Hambling
2PR101 1.test - 10. část
Nikola Truong
Browse Library