Question 1
Question
'n Spesiale lotery word gehou met koshuis studente wat in 'n luukse kamer sal kan bly vir 'n jaar. Daar is 100 derdejaar, 150 tweedejaar en 200 eerstejaar studente. Die derdejaars se name word 3 keer, tweedejaars 2 keer en eerstejaars 1 keer geplaas. 'n Naam word willekeurig gekies. Wat is die waarskynlikheid dat 'n derdejaar student se naam gekies word?
A special lottery is held with hostel students who will be able to stay in a luxury room for a year. There are 100 third year, 150 second year and 200 first year students. The third year names are placed 3 times, second years 2 times and first years 1 time. A name is chosen at random. What is the probability of a third-year student's name being chosen?
Answer
-
\(\frac{1}{8}\)
-
\(\frac{2}{7}\)
-
\(\frac{2}{9}\)
-
\(\frac{3}{8}\)
Question 2
Question
Die volgende toon middag temperature in Durban vir een week:
Maandag: 30 Dinsdag: 33 Woensdag: 32 Donderdag: 33 Vrydag: 29 Saterdag: 33 Sondag:31
As m die mediaan, f die modus en g die gemiddeld voorstel, watter bewering is waar:
The following shows afternoon temperatures in Durban for one week:
Monday: 30 Tuesday: 33 Wednesday: 32 Thursday: 33 Friday: 29 Saturday: 33 Sunday: 31
If m represents the median, f the mode and g the average, which statement is true:
Question 3
Question
Beskou die skets: In die skets is sinA=
Consider the sketch: In the sketch, sinA =
Answer
-
\(\frac{asinB}{c}\)
-
\(\frac{bsinB}{a}\)
-
\(\frac{asinB}{b}\)
-
\(\frac{asinC}{b}\)
Question 4
Question
'n Bedrag word verhoog met 10%, en toe weer met 10%. Die totale verhoging is:
An amount is increased by 10%, and then again by 10%. The total increase is:
Question 5
Question
As \(-x<-y\), met \(x\) en \(y\) positiewe heelgetalle, watter bewering is waar:
If\(-x<-y\), with\(x\) and \(y\) are positive integers, which statement is true:
Answer
-
\(x<y\)
-
\(x+y<0\)
-
\((-x)^2<(-y)^2\)
-
\((-x)^3<(-y)^3\)
Question 6
Question
Gegee \(xy=8, xz=16\) en \(yz=32\). Dan is \(x+y+z=\)
Given\(xy=8, xz=16\) and \(yz=32\). Then \(x+y+z=\)
Question 7
Question
As \(f(x)=-\frac{1}{x}+1\) en \(g(x)=1-x\), dan is \(f(g(x))=\)
If\(f(x)=-\frac{1}{x}+1\) and \(g(x)=1-x\), then \(f(g(x))=\)
Answer
-
\(\frac{1}{x}\)
-
\(\frac{x}{x-1}\)
-
\(\frac{2-x}{1-x}\)
-
\(\frac{x}{1-x}\)
Question 8
Question
Die gemiddeld van 10 getalle word bereken as 60. Daarna kom hulle agter dat die getal 73 per ongeluk ingelees is as 37. Die gemiddeld van die 10 getalle is dus:
The average of 10 numbers is calculated as 60. Then they find out that the number 73 was inadvertently entered as 37. The average of the 10 numbers is thus:
Question 9
Question
Die skets toon die grafiek van \(y=-a^x\). Die moontlike waardes van \(a\) is:
The sketch shows the graph of \(y=-a^x\). The possible values of \(a\) are:
Answer
-
\(a<-1\)
-
\(-1<a<0\)
-
\(0<a<1\)
-
\(a>1\)
Question 10
Question
Die deursnee van 'n wiel is 3m. Dit maak een omwenteling in 2 sekondes. Hoeveel meter beweeg dit na 30 sekondes?
The diameter of a wheel is 3m. It makes one revolution in 2 seconds. How many meters does it move after 30 seconds?
Answer
-
\(15\pi\)
-
\(30\pi\)
-
\(45\pi\)
-
\(60\pi\)
Question 11
Question
In die skets is sirkel met middelpunt A en AB ll CD. Dan is die verband tussen \(x\) en \(y\):
In the sketch, circle with center A and AB is CD. Then the connection between \(x\) and \(y\):
Answer
-
\(x+y=180^\circ\)
-
\(2y-x=180^\circ\)
-
\(2x=y\)
-
\(2y=x\)
Question 12
Question
'n Man ry \(\frac{x}{6}\) km in 20 minute. Hoeveel km sal hy in \(y\) minute ry?
A man drives \(\frac{x}{6}\) km in 20 minutes. How many km will he drive in\(y\ minutes?
Answer
-
\(\frac{xy}{120}\)
-
\(\frac{10x}{3y}\)
-
\(\frac{10xy}{3}\)
-
\(\frac{120}{xy}\)
Question 13
Question
Die refleksie van die lyn \(y=-3x+4\) in die \(y\) -as is
The reflection of the line \(y=-3x+4\) in the\(y\) -axis is
Answer
-
\(y=\frac{1}{3}x+4\)
-
\(y=\frac{1}{3}x-4\)
-
\(y=3x-4\)
-
\(y=3x+4\)
Question 14
Question
Waar moet die \(y\)-as getrek word sodat die volgende die grafiek van \(y=-sinx\) sal wees:
Where should the \(y\) axis be drawn so that the following will be the graph of \(y=-sinx\):
Question 15
Question
As ABC 'n driehoek is, watter stelling is waar: sin C=
If ABC is a triangle, which statement is true: sin C =
Answer
-
sinA.cosB + sinB.cosA
-
sinA.cosB - sinB.cosA
-
sinA.cosA + sinB.cosB
-
sinA.cosA - sinB.cosB
Question 16
Question
Die 3 hoeke van 'n driehoek vorm 'n rekenkundige ry. Dan is die grootte van die middelste hoek =
The 3 angles of a triangle form an arithmetic sequence. Then the size of the middle angle =
Answer
-
\(15^\circ\)
-
\(30^\circ\)
-
\(45^\circ\)
-
\(60^\circ\)
Question 17
Question
Die vergelyking van die raaklyn aan die sirkel \(x^2+y^2=1\) by die punt \(x=1\) is
The equation of the tangent to the circle\(x^2+y^2=1\) at the point \(x=1\) is
Answer
-
\(y=1\)
-
\(x+y=1\)
-
\(x=1\)
-
\(y=x\)
Question 18
Question
Die som van die eerste 10 terme van die ry \(a; a+4; a+8;…\) is gelyk aan 50. Dan is \(a=\)
The sum of the first 10 terms of the sequence\(a; a+4; a+8;…\) is equal to 50. Then \(a=\)
Question 19
Question
Wat is die periode van \(2+cos3x\)?
What is the period of \(2+cos3x\)?
Answer
-
\(720^\circ\)
-
\(180^\circ\)
-
\(120^\circ\)
-
\(1080^\circ\)
Question 20
Question
\(\frac{(x^2+1)(x^2-9)(x-\sqrt3)}{x-1}=0\) word gegee. Hoeveel rasionale wortels het die vergelyking?
\(\frac{(x^2+1)(x^2-9)(x-\sqrt3)}{x-1}=0\) is given. How many roots does the equation have?