Question 1
Question
SpO2 – Pulse Ox
Advantage: [blank_start]Continuous[blank_end] readings
Disadvantage: Inaccurate with poor perfusion or [blank_start]motion[blank_end] artifact
Terminate test if SpO2 is <[blank_start]85[blank_end]%
Question 2
Question
Tidal Volume Vt
= VE / RR
Normal: [blank_start]5[blank_end] ml per kg of body weight
At low/moderate workloads total ventilation will increase by increasing [blank_start]tidal volume[blank_end]
At high workloads total ventilation increases by increasing [blank_start]respiratory rate[blank_end]
Answer
-
5
-
tidal volume
-
respiratory rate
Question 3
Question
Frequency of Breathing
(# of accumulated breathes) / testing time in minutes = RR
Normal at rest: [blank_start]8[blank_end] – [blank_start]12[blank_end]
Question 4
Question
Minute Ventilation
Vt x RR = Ve
Normal Resting: [blank_start]5[blank_end] – [blank_start]10[blank_end] L/min
Normal Exercising: [blank_start]100[blank_end] – [blank_start]200[blank_end] L/min
Maximum minute ventilation = FEV1 x [blank_start]35[blank_end]
Should be able to reach [blank_start]70[blank_end]% of max
If max minute ventilation is [blank_start]reached[blank_end] this indicates a primary ventilator limitation to exercise.
Answer
-
5
-
10
-
100
-
200
-
35
-
70
-
reached
Question 5
Question
Alveolar Minute Ventilation
= (Vt-[blank_start]VD[blank_end]) x [blank_start]RR[blank_end] or = VE – (VD x RR)
Estimated anatomical deadspace is [blank_start]1[blank_end] ml per lb of body weight
Question 6
Question
O2 Consumption – (VO2) Amount of O2 [blank_start]consumed[blank_end] in L/min
Normal at Rest: [blank_start].25[blank_end] L/min
Normal Exercising: Up to [blank_start]4[blank_end] L/min
Requires inline gas analyzers to measure O2%, an FeCO2 [blank_start]analyzer[blank_end] and a spirometer
Question 7
Question
O2 Pulse
Volume of O2 consumer per [blank_start]heartbeat[blank_end]
(VO2/HR) x [blank_start]1000[blank_end] = mL O2/beat
Normal Resting: [blank_start]2.5[blank_end] – [blank_start]4[blank_end] mL O2/beat
Normal Exercising: [blank_start]10[blank_end] – [blank_start]15[blank_end] mL O2/beat
Significance: O2 pulse that doesn’t increase with high HR indicates [blank_start]heart[blank_end] disease
Tachycardia at rest will [blank_start]decrease[blank_end] O2 pulse
Arrhythmia will [blank_start]increase[blank_end] O2 pulse
Beta Blockers will [blank_start]increase[blank_end] O2 pulse
Plateau in O2 consumption will [blank_start]decrease[blank_end] O2 pulse
Answer
-
heartbeat
-
1000
-
2.5
-
4
-
10
-
15
-
heart
-
decrease
-
increase
-
increase
-
decrease
Question 8
Question
CO2 Production (VCO2) – Amount of CO2 [blank_start]produced[blank_end] in L/min
Normal resting: [blank_start].2[blank_end] L/min
Normal exercising: Up to [blank_start]4[blank_end] l/min
Gives indication of [blank_start]metabolic[blank_end] status
FeCO2 x [blank_start]VE[blank_end] = VCO2
Answer
-
produced
-
.2
-
4
-
metabolic
-
VE
Question 9
Question
PH
pH will decrease due to increased [blank_start]PaCO2[blank_end] and [blank_start]lactic[blank_end] acid
In normal patients, pH will not decrease until [blank_start]anaerobic threshold[blank_end] is reached.
Answer
-
lactic
-
PaCO2
-
anaerobic threshold
Question 10
Question
Alveolar-Arterial O2 Tension, A-a Gradient, PAO2-PaO2 or P(A-a)O2
PaO2 <[blank_start]50[blank_end] means you should terminate the tes
Normal P(A-a)O2
On RA: [blank_start]10[blank_end]-[blank_start]20[blank_end]
On 100% O2: Less than [blank_start]100[blank_end]
Increase in P(A-a)O2 with [blank_start]decrease[blank_end] in PaO2: Increased right to left [blank_start]shunt[blank_end], [blank_start]V/Q[blank_end] mismatch, [blank_start]diffusion[blank_end] defects
Use Supplemental O2 if [blank_start]hypoxemic[blank_end] at rest.
Answer
-
50
-
10
-
20
-
100
-
decrease
-
shunt
-
V/Q
-
diffusion
-
hypoxemic
Question 11
Question
Ventilatory Equivalent for O2 (Ve/VO2)
Relationship of Ve to [blank_start]workload[blank_end] performed (VO2)
Gives indication of [blank_start]efficiency[blank_end] of gas exchange at different workloads
[blank_start]Ve[blank_end](BTPS)/[blank_start]VO2[blank_end](STPD)
Normal at rest and low/moderate workloads: [blank_start]20[blank_end] – [blank_start]30[blank_end] L/LVO2
Increase in Ve out of proportion to [blank_start]increase[blank_end] in VO2 means [blank_start]pulmonary[blank_end] disease
Increase in Ve/VO2 at rest means [blank_start]hyperventilation[blank_end]
Answer
-
workload
-
efficiency
-
Ve
-
VO2
-
20
-
30
-
increase
-
pulmonary
-
hyperventilation
Question 12
Question
Ventilatory Equivalent for CO2 (Ve/VCO2)
Relationship of Ve to [blank_start]VCO2[blank_end]
[blank_start]Ve[blank_end](BTPS)/[blank_start]VCO2[blank_end](STPD)
Normal: [blank_start]25[blank_end]-[blank_start]35[blank_end] L/LCO2
Can be used to determine maximum tolerable workloads for patients with [blank_start]pulmonary[blank_end] disease
Anaerobic threshold reached when Ve/VCO2 is constant but Ve/VO2 [blank_start]increases[blank_end]
Answer
-
VCO2
-
Ve
-
VCO2
-
25
-
35
-
pulmonary
-
increases
Question 13
Question
PaCO2/ETCO2
Used to calculate [blank_start]VD/Vt[blank_end]
Normal VD/Vt = [blank_start].2[blank_end] - [blank_start].4[blank_end] at rest
[blank_start]Decreases[blank_end] with exercise
Moderate Workloads: PaCO2 is constant, [blank_start]PeCO2[blank_end] increases
High Workloads: Metabolic [blank_start]acidosis[blank_end] due to lactic acid production
Answer
-
VD/Vt
-
.2
-
.4
-
Decreases
-
PeCO2
-
acidosis
Question 14
Question
Respiratory Exchange Ratio (RER)
Relationship of O2 consumption and CO2 production at the mouth which represents gas exchange in the lungs
RER = [blank_start]VCO2[blank_end]/[blank_start]VO2[blank_end] or (FeCO2xVe)/VO2
Normal at rest: [blank_start].85[blank_end]
Normal with Exercise: [blank_start]1.0[blank_end] or greater
RER should [blank_start]increase[blank_end] at anaerobic threshold
Answer
-
VCO2
-
VO2
-
.85
-
1.0
-
increase
Question 15
Question
Hemodynamics
Cardiac Monitor – Simplest way to monitor heart rate and rhythm.
Normal HR: [blank_start]60[blank_end] – [blank_start]100[blank_end]
Question 16
Question
Blood Pressure:
Equipment: Indwelling catheter and pressure transducer
You can also take BP [blank_start]manually[blank_end]
Normal Values:
Systolic: [blank_start]120[blank_end]
Diastolic: [blank_start]80[blank_end]
Mean: [blank_start]93[blank_end]
MAP = (2x [blank_start]diastolic[blank_end] + [blank_start]systolic[blank_end])/3
Heart spends twice as much time in [blank_start]diastole[blank_end].
Answer
-
manually
-
120
-
80
-
93
-
diastolic
-
systolic
-
diastole
Question 17
Question
Central Venous Pressure (CVP)
Used to Monitor systemic [blank_start]venous[blank_end] drainage and function of the [blank_start]right[blank_end] heart.
Catheter is located in [blank_start]right[blank_end] [blank_start]atria[blank_end].
Normal: [blank_start]2[blank_end]-[blank_start]6[blank_end] mmHG or [blank_start]4[blank_end]-[blank_start]12[blank_end] cmH2O
CVP – AKA:
Right [blank_start]Atrial[blank_end] Pressure
R Atriral filling pressue
[blank_start]Right[blank_end] side preload
Right ventricular [blank_start]filling[blank_end] pressure
[blank_start]Right[blank_end] ventricular end [blank_start]diastolic[blank_end] pressure
Answer
-
venous
-
right
-
right
-
atria
-
2
-
6
-
4
-
12
-
Atrial
-
Right
-
filling
-
diastolic
-
Right
Question 18
Question
Pulmonary Artery pressure (PAP)
PAP and PCWP are measure with [blank_start]balloon[blank_end] tipped [blank_start]flow[blank_end] directed pulmonary artery catheter (Swan Ganz)
Catheter is directed through the [blank_start]right[blank_end] side of the heart and positioned in [blank_start]pulmonary artery[blank_end]
Normal PAP:
Systolic: [blank_start]25[blank_end] mmHg
Diastolic: [blank_start]8[blank_end] mmHg
Mean: [blank_start]14[blank_end] mmHg
Mixed [blank_start]venous[blank_end] samples should be drawn from pulmonary artery.
If blood is bright red the balloon was [blank_start]inflated[blank_end] or wedged if PaCO2 = PaO2
Answer
-
balloon
-
flow
-
right
-
pulmonary artery
-
25
-
8
-
14
-
venous
-
inflated
Question 19
Question
Pulmonary Capillary Wedge Pressure (PCWP)
When balloon is [blank_start]inflated[blank_end] it will measure PCWP
Normal = [blank_start]8[blank_end] mmHg (4-12)
Estimates pulmonary [blank_start]venous[blank_end] drainage back to [blank_start]left[blank_end] heart
PCWP aka:
[blank_start]Left[blank_end] atrial pressure
Left atrial [blank_start]filling[blank_end] pressure
Left side preload
[blank_start]Left[blank_end] ventricular filling pressure
Left [blank_start]ventricular[blank_end] end diastolic pressure
Answer
-
inflated
-
8
-
venous
-
left
-
Left
-
filling
-
Left
-
ventricular
Question 20
Question
Cardiac Output (Qt)
Output of left [blank_start]ventricle[blank_end] to systemic [blank_start]arterial[blank_end] circulation
Normal Qt is [blank_start]5[blank_end] L/min (4-8) depending on body size
Fick equation: Qt = [blank_start]VO2[blank_end]/(C(a-v)O2x [blank_start]10[blank_end])
If stroke volume is known: Qt= [blank_start]HR[blank_end] x [blank_start]Stroke Volume[blank_end]
Thermal Dilution: Cold saline injection
Cardiac Index = [blank_start]Qt[blank_end] /([blank_start]body surface area[blank_end]) Normal: [blank_start]2.5[blank_end] – [blank_start]4[blank_end] lpm/m2
Answer
-
ventricle
-
arterial
-
5
-
VO2
-
10
-
HR
-
Stroke Volume
-
Qt
-
body surface area
-
2.5
-
4
Question 21
Question
CVP: ↑ ↑ PAP: N ↓ PCWP: N ↓ QT: N = [blank_start]Right[blank_end] Heart Failure, [blank_start]Cor[blank_end] Pulmonale, [blank_start]Tricuspid[blank_end] Valve Stenosis
Question 22
Question
CVP: ↑ PAP: ↑↑ PCWP: N ↓ QT: N = [blank_start]Lung[blank_end] Disorders, Pulm [blank_start]Embolism[blank_end], [blank_start]Pulm[blank_end] HTN, Air [blank_start]Embolism[blank_end]
Answer
-
Lung
-
Embolism
-
Pulm
-
Embolism
Question 23
Question
CVP: N PAP: ↑ PCWP: ↑↑ QT:↓ = [blank_start]Left[blank_end] heart Failure, [blank_start]mitral[blank_end] valve stenosis, [blank_start]CHF[blank_end], High [blank_start]PEEP[blank_end] effects
Question 24
Question
CVP: ↑↑ PAP: ↑ PCWP: ↑ QT: ↑ = [blank_start]Hypervolemia[blank_end]
CVP: ↓↓ PAP: ↓ PCWP: ↓ QT: ↓ = [blank_start]Hypovolemia[blank_end]
Question 25
Question
Systemic Vascular resistance (SVR) : Pressure gradient across [blank_start]systemic[blank_end] circulation divided by [blank_start]Qt[blank_end]
SVR = ([blank_start]MAP[blank_end] – [blank_start]CVP[blank_end]) / Qt
Normal: <[blank_start]20[blank_end] mmHg/l/min or 1600 Dynes/sec
SVR is [blank_start]increased[blank_end] with systemic hypertension or vasoconstriction
Answer
-
systemic
-
Qt
-
increased
-
20
-
MAP
-
CVP
Question 26
Question
Pulmonary Vascular Resistance (PVR): Pressure gradient across [blank_start]pulmonary[blank_end] circulation divided by Qt
PVR = ([blank_start]MPAP[blank_end] – [blank_start]PCWP[blank_end]) / Qt
Normal: < [blank_start]2.5[blank_end] mmHg/L/mi or 200 Dynes/sec
PVR is increased with [blank_start]hypoxia[blank_end], [blank_start]pulmonary[blank_end] HTN, [blank_start]lung[blank_end] disease
Answer
-
pulmonary
-
MPAP
-
PCWP
-
2.5
-
hypoxia
-
pulmonary
-
lung
Question 27
Question
Metabolic Measurements
[blank_start]Breath[blank_end]-by-breath measurement
Determines [blank_start]metabolic[blank_end] measurements of VO2, VCO2, RR, Vt
Requires use of one way valve, [blank_start]pneumotach[blank_end] and continuous sampling of gases.
Mixing Chamber
Pt inspires room air via 1 way valve then exhales into gas mixing chamber with [blank_start]baffles[blank_end] to completely mix the gases
[blank_start]O2[blank_end] and [blank_start]CO2[blank_end] concentration are measured.
Answer
-
Breath
-
metabolic
-
pneumotach
-
O2
-
CO2
-
baffles