Trigonometric Problems

Description

Trigonometric Problems
Doc Boff
Slide Set by Doc Boff, updated more than 1 year ago
Doc Boff
Created by Doc Boff almost 6 years ago
11
1

Resource summary

Slide 1

    Questions
    1. Prove x is an integer and state it's value in: (3sinx + cosx)^2 + (sinx-3cosx)^2 2. Show 6sin^2x = 4 + cosx is the same as 6cos^2x + cosx - 2 = 0 3. Show 7sin^2θ  +sinθcosθ = 6 is the same as tan^2θ + tanθ - 6 = 0 4. Prove: sinA/1+cosA + 1+cosA/sinA ≡ 2/sinA 5. Show that 3+sin^2θ  / cosθ-2 = 3cosθ 6. Solve cos(3x+50) = (root(3))/2 between -180≤x≤360 7. Solve 6tanxsinx=5 8. Solve: 5cos^2x - 13sinx + 1 = 0       (hence solve 5cos^2(x+30) - 13sin(x+30) + 1 = 0)    range= 0<x<360

Slide 2

    1. Prove x is an integer and state it's value in: (3sinx + cosx)^2 + (sinx-3cosx)^2   Expand: 9sin^2x + 6sinxcosx + cos^2x + sin^2x - 6sinxcosx + 9cos^2x Collect together: 10sin^2x + 10cos^2x Factor out 10: 10(sin^2x + cos^2x) Use identity that sin^2x + cos^2x ≡  1 : 10(1) = 10
    1....

Slide 3

    2....
    2. Show 6sin^2x = 4 + cosx is the same as 6cos^2x + cosx - 2 = 0   sin^2x + cos^2x≡ 1 , so sin^2x≡1-cos^2x. Here we can say: 6(1-cos^2x) = 4+cosx Expand and rearrange into quadratic: 6cos^2x + cosx - 2 = 0 Solve for x=1/2 or -2/3  

Slide 4

    3....
    3. Show 7sin^2θ  +sinθcosθ = 6 is the same as tan^2θ + tanθ - 6 = 0   Start at answer: Use identity tanθ = sinθ/cosθ ; tan^2θ + tanθ - 6 = 0 is same as sin^2θ / cos^2θ + sinθ/cosθ - 6 = 0 Now remove denominators: sin^2θ + sinθcosθ - 6cosθ = 0 We use identity sin^2θ + cos^2θ ≡ 1 and rearrange to cos^2θ ≡ 1- sinθ and plug in : sin^2θ + sinθcosθ - 6(1-sin^2θ) Same as: sin^2θ + sinθcosθ - 6 + 6sin^2θ = 0 , collect together for: 7sin^2θ+sinθcosθ-6=0 Same as: 7sin^2θ  +sinθcosθ = 6

Slide 5

    4. Prove: sinA/1+cosA + 1+cosA/sinA ≡ 2/sinA   Left side: sinA/1+cosA + 1+cosA/sinA , remove denominator: (sinA(sinA) + (1+cosA)(1+cosA))/sinA(1+cosA) Expand top: (sin^2A+1+2cosA+cos^2A)/sinA(1+cosA) , same as: ((sin^2A + cos^2A) + 1 + 2cosA)/sinA(1+cosA) Use identity sin^2θ + cos^2θ ≡ 1to say: (1+1+2cosA)/sinA(1+cosA) , same as: (2(1+cosA)/sinA(1+cosA)) Cancel (1+cosA): 2/sinA
    4....

Slide 6

    5. Show that 3+sin^2θ  / cosθ-2 = 3cosθ Remove denominator: 3+sin^2θ=3cosθ(cosθ-2) Use identity sin^2θ + cos^2θ ≡ 1 and rearrange to sin^2θ ≡ 1- cosθ to say 3+(1-cos^2θ) = 3cosθ(cosθ-2) Same as: 4-cos^2θ = 3cos^2θ - 6cosθ Move to 1 side and collect: 4cos^2θ - 6cosθ - 4 = 0 Solve quadratic: cos=-1/2 or 2 Cos must be -1/2 as -1≤cos≤1
    5....

Slide 7

    6....
    6. Solve cos(3x+50) = (root(3))/2 between -180≤x≤360   cos-1(root(3))/2 = 30 , other value therefore = -30 , +/-360 = 390,330,750,690,1110,1050 -50 (3x) : -20 , -80 , 340 , 280 , 700 , 640 , 1060 , 1000 Divided by 3 (x) : -20/3 , -80/3 , 340/2 , 280/3 , 700/3 , 640/3 , 1060/3 , 1000/3 , -380/3 , -440/3

Slide 8

    7. Solve 6tanxsinx=5   First show that 6tanxsinx=5 is the same as 6cos^2x+5cosx-6=0 : 6(sin/cos)sin=5 , 6sin^2x/cosx =5, 6sin^2x=5cosx, 6(1-cos^2x)=5cos, 6cos^2x+5cosx-6=0 Now solve: solve quadratic for cosx=2/3 or -3/2 , but the it must be 2/3 as -1≤cos≤1 and find all other values which right now i cba to do so sry future self
    7....

Slide 9

    8.....
    5cos^2x - 13sinx + 1 = 0     (range= 0<x<360) cos^2x + sin^2x ≡ 1 5(1 - sin^2x) - 13sinx + 1 = 0   ,   5 - 5sin^2x - 13sin + 1   ,   5sin^2x + 13sinx - 6 = 0 Solve 5sin^2x + 13sinx - 6 = 0 as a quadratic to get sin = 2/5 or -3. Sin-1(2/5) = 23.6 , 180-23.6 = 156.4.    +/- 360 but gives values not in range.    Sin-1(-3) is invalid as sin is from -1 to 1. Hence 5cos^2(x+30) - 13sin(x+30) + 1 = 0 x+30 = 23.6 , 156.4 x= -6.4 , 126.4   +/-360 = 353.6 Range= 0<x<360 , so answers = 126.4 , 353.6  
Show full summary Hide full summary

Similar

Fractions and percentages
Bob Read
GCSE Maths Symbols, Equations & Formulae
Andrea Leyden
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
GCSE Maths: Understanding Pythagoras' Theorem
Micheal Heffernan
Using GoConqr to study Maths
Sarah Egan
New GCSE Maths
Sarah Egan
Maths GCSE - What to revise!
livvy_hurrell
GCSE Maths Symbols, Equations & Formulae
livvy_hurrell
STEM AND LEAF DIAGRAMS
Elliot O'Leary
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary