Es frecuente que cuando se realiza un estudio interese estudiar una serie de subpoblaciones (estratos) en la población, siendo importante que en la muestra haya representación de todos y cada uno de los estratos considerados. El muestreo aleatorio simple no nos garantiza que tal cosa ocurra. Para evitar esto, se saca una muestra de cada uno de los estratos.(Doupovec, 2009)
Se clasifican distintas partes o secciones existentes de la población según alguna característica propia de cada parte (como nivel económico o profesional, por ejemplo) y se toma la muestra en cada una de manera totalmente aleatoria. En este caso hablamos de afijación para referirnos a la importancia relativa que damos a cada sección estudiada por separado, si todos las partes tienen el mismo número de muestra será afijación simple, si cada parte tiene muestras proporcionales al tamaño de esa parte afijación proporcional y será afijación óptima si el tamaño de la muestra de cada parte responde al análisis de la importancia que tendrá para el dato a estudiar.
Se determina los estratos que conforman la población blanco para seleccionar y extraer de ellos la muestra (se define como estrato a los subgrupos de unidades de análisis que difieren en las características que van a ser analizadas). La base de la estratificación se basa en variable como edad, sexo, nivel socioeconómico, etc. Entonces, se divide la población compuesta por “N” individuos, en “x” subpoblaciones o estratos, con base a variables importantes para la conducción del estudio, y de tamaños respectivos N1, N2, N3, N4 ..., Nk; y realizando en cada una de estos estratos, muestreos aleatorios simples de tamaño ni; para finalmente definir cuantos elementos de la muestra se han de seleccionar de cada uno de los estratos; para lo cual se dispone de las siguientes opciones: asignación proporcional (el tamaño de la muestra de cada estrato es proporcional al tamaño del estrato que le dio origen, respecto a la población total) y asignación óptima (el tamaño de la muestra de cada estrato, son definidos por quien hace el muestreo) (Bai et al., 2013). Por ejemplo: ante la pregunta ¿Cuál es la muestra necesaria para establecer la prevalencia de cambios inflamatorios en biopsias hepáticas de pacientes con CA? Un muestreo aleatorio estratificado aplicaría de la siguiente forma: entre todos los sujetos con CA, agrupar en forma aleatoria por características de interés como: gravedad de la enfermedad (leve, moderado, grave); intensidad de la fiebre (febril, afebril, hipotérmico); leucocitosis (con y sin leucocitosis); nivel de bilirrubina total (hasta 2,0; 2,1 a 4,0; 4,1 a 6,9; 7,0 o más), etc.
Se clasifican distintas partes o secciones existentes de la población según alguna característica propia de cada parte (como nivel económico o profesional, por ejemplo) y se toma la muestra en cada una de manera totalmente aleatoria. En este caso hablamos de afijación para referirnos a la importancia relativa que damos a cada sección estudiada por separado, si todos las partes tienen el mismo número de muestra será afijación simple, si cada parte tiene muestras proporcionales al tamaño de esa parte afijación proporcional y será afijación óptima si el tamaño de la muestra de cada parte responde al análisis de la importancia que tendrá para el dato a estudiar.
Es frecuente que cuando se realiza un estudio interese estudiar una serie de subpoblaciones (estratos) en la población, siendo importante que en la muestra haya representación de todos y cada uno de los estratos considerados. El muestreo aleatorio simple no nos garantiza que tal cosa ocurra. Para evitar esto, se saca una muestra de cada uno de los estratos.(Doupovec, 2009)
REFERENCIAS
Ávila Baray, H. L. Introducción a la Metodología de la Investigación. Edición electrónica. Cuauhtémoc (Chihuahua), Instituto Tecnológico de Cd. Cuauhtémoc, 2006 Disponible en: http://www.eumed.net/libros-gratis/2006c/203/index.htm
Arias-Gómez, J.; Villasís-Keever, M. Á. & Miranda-Novales, M. G. The research protocol III. Study population. Rev. Alerg. Mex., 63(2):201-6, 2016.
Bai, X.; Tsiatis, A. A. & O'Brien, S. M. Doubly-robust estimators of treatment-specific survival distributions in observational studies with stratified sampling. Biometrics, 69(4):830-9, 2013.
Dieterich, H. Nueva Guía para la Investigación Científica. Ciudad de México, Editorial Planeta Mexicana, 1996. Disponible en: http:// www.ceuarkos.com/heinz.pdf
Goto, R.; Arai, K.; Kitada, H.; Ogoshi, K. & Hamashima, C. Labor resource use for endoscopic gastric cancer screening in Japanese primary care settings: A work sampling study. PLoS One, 9(2):e88113, 2014