Motion in 2 and 3 dimensions: Ch. 4

Beschreibung

Mindmap am Motion in 2 and 3 dimensions: Ch. 4, erstellt von Meri perkins am 29/01/2018.
Meri perkins
Mindmap von Meri perkins, aktualisiert more than 1 year ago
Meri perkins
Erstellt von Meri perkins vor fast 7 Jahre
4
0

Zusammenfassung der Ressource

Motion in 2 and 3 dimensions: Ch. 4
  1. Projectile Motion
    1. Horizontal Motion
      1. x Speed never changes
        1. Vix=vx
      2. Vertical motion
        1. vy=vy+ay(t)
          1. viy-gt
        2. How do we find Range?
          1. Ex. vi= 55m/s
            1. h= 500m
              1. angle= tan^-1(h/x)
                1. angle is the top left of RT with 90 degree angle on left
                  1. x= vix(t)+1/2(ax)(t^2)
                    1. x=vix(t)
                      1. ax=0
                        1. deltay=viyt +_ 1/2 ay t^2
                          1. -h=sqrt(2h/g)
                            1. 10.15
                              1. This goes into x= vix(t)
                                1. x=(55m/s)(10.15)
                                  1. angle = tan^-1 (555.5/500)
                                    1. 45 deg
                                      1. After Being shot from a cannon soured over 3 Ferris Wheels into a net
                                        1. Known values
                                          1. vi=26.5m/s
                                            1. angle theta= 53deg
                                              1. ay=-g
                                                1. -9.81m/s^2
                                                  1. Distance in x To first wheel: 23 m
                                                    1. h=delta h-H
                                                      1. Time to cross Ferris wheel
                                                        1. delta y = viy(t)-1/2gt^2
                                                          1. delta x/vocosthetai
                                                          2. delta y=visintheta(deltax/vicosthetai)-1/2 g (deltax/vicosthetai)^2
                                                            1. =deltax tan theta-1/2g (delta x^2)/(vi^2cos^2 Thetai)
                                                              1. If Reached max height, How much did rider Clear it?
                                                                1. Here we are finding range
                                                                  1. R-= vi^2/g * sin 2thetai
                                                                    1. How Far should Net Be? away from initial starting point
                                                                  2. Use KInematic equations the most
                                                                  3. a) this is calculating clearence over first wheel
                                                  2. unkown
                                                    1. vix=vicostheta
                                                      1. viy=viysin theta
                      2. Uniform Circular motion
                        1. Velocity must be constant for a=0
                          1. To Obtain UCM
                            1. Travels around a circle or circular arc
                              1. Must be at constant speed
                                1. since Velocity Constantly changes The particle is accellerating
                                  1. Veloc and accel. Both have
                                    1. 1) Constant Magnitude
                                      1. 2) Changing direction
                                        1. Ex. We have a circle
                                          1. v (mag)=-vxi(hat)+vyj(hat)
                                            1. Look at where theta is on the circle
                                              1. =-vsini(hat)+vcosj(hat)
                                                1. costheta=y/x
                                                  1. In a particular triagle
                                                  2. Velocity Vector
                                                    1. v(mag)=-v(y/r)i(hat) + v (x/r)j(hat)
                                                      1. a=-v/r (dy/dt)i (hat) + v/r (dx/dt) j(hat)
                                                        1. =-v^2/rvcos i (hat) + v/r * vsin theta j(hat)
                                                          1. a(mag)= v^2/r * costhetai(hat) + v^2/r * sinthetaj(hat)
                                                            1. absvalue a = sqrt ((-v^2/r* costheta)^2+(v^2/r* sintheta)^2)
                                        2. Speed and veloc not same!
                                        3. Circular Motion:
                                          1. Centripital Acceleration
                                            1. change in speed over change in time
                                              1. a=v^2/r
                                                1. Period of Revolution
                                                  1. Time is takes to go around path once
                                                    1. T=2pir/v
                                  Zusammenfassung anzeigen Zusammenfassung ausblenden

                                  ähnlicher Inhalt

                                  Vector Homework Ch. 3 Physics
                                  Meri perkins
                                  VIsualize Vectors in two dimensions
                                  Meri perkins
                                  Checkfragen - Kapitel 1: Empirische Sozialforschung und empirische Theorie
                                  Melanie Najm
                                  Blut
                                  Paula <3
                                  PuKW Step 6 Teil 1
                                  Mona Les
                                  B, Kapitel 2, Arbeits- und Sozialordnung
                                  Stefan Kurtenbach
                                  Ecologie politique - Vocabulaire
                                  Gaelle Bourgeois
                                  Vetie Immunologie Eingangsklausur WS 2012/2013
                                  T .L
                                  Vetie Immunologie 168-196
                                  verena be
                                  AVO & Klinische Pharmakologie 2013
                                  Schmolli Schmoll
                                  Vetie Berufsrecht 2021
                                  Mascha K.