Análisis del Movimiento Absoluto

Beschreibung

Mindmap am Análisis del Movimiento Absoluto, erstellt von Konnie Gutierrez am 23/10/2014.
Konnie Gutierrez
Mindmap von Konnie Gutierrez, aktualisiert more than 1 year ago
Konnie Gutierrez
Erstellt von Konnie Gutierrez vor etwa 10 Jahre
1079
0

Zusammenfassung der Ressource

Análisis del Movimiento Absoluto
  1. Un movimiento se llama absoluto y eterno, cuando lo referimos a un punto que está quieto. Es aquel movimiento que existe con independencia de cualquier relación o comparación,como la masa de un cuerpo, que es un valor absoluto porque no depende del lugar en que esté situado.
    1. A efectos prácticos, podemos distinguir dos modalidades de movimiento relativo: Movimiento relativo entre dos partículas en un mismo referencial. Movimiento relativo de una partícula en dos referenciales diferentes en movimiento relativo entre sí.
      1. Movimiento relativo entre dos partículas en un mismo referencial
        1. Consideremos dos partículas, A y B, que se mueven en el espacio y sean rA y rB sus vectores de posición con respecto al origen O de un referencial dado. Las velocidades de A y B medidas en ese referencial serán
          1. Los vectores de posición (relativa) de la partícula B con respecto a la A y de la A con respecto a la B están definidos, y las velocidades (relativas) de B con respecto a A y de A con respecto a B son
            1. y las velocidades (relativas) de B con respecto a A y de A con respecto a B son vBA=drBAdtvAB=drABdt Puesto que rBA=−rAB, también resulta que vBA=−vAB, de modo que las velocidades relativas de B con respecto a A y de A con respecto a B son iguales y opuestas. Efectuando las derivadas (3), resulta (4)drBAdt=drBdt−drAdtdrABdt=drAdt−drBdt o sea que vBA=vB−vAvAB=vA−vB de modo que obtendremos la velocidad relativa entre las dos partículas restando vectorialmente sus velocidades con respecto a un mismo referencial (Oxyz en la figura). Derivando de nuevo las expresiones (5) tenemos para las aceleraciones relativas dvBAdt=dvBdt−dvAdtdvABdt=dvAdt−dvBdt Los primeros miembros de (6) son las aceleraciones relativas de B con respecto a A y de A con respecto a B. Los otros términos son las aceleraciones de A y de B con respecto a un mismo observador Oxyz. Tenemos (7)aBA=aB−aAaAB=aA−aB siguiéndose para las aceleraciones relativas la misma regla que para las velocidades.
        2. Movimiento relativo de una partícula en dos referenciales
          1. En este caso, el movimiento relativo hace referencia al que presenta una partícula con respecto a un sistema de referencia (xyz), llamado referencial relativo o móvil por estar en movimiento con respecto a otro sistema de referencia (XYZ) considerado como referencial absoluto o fijo. El movimiento de un referencial respecto al otro puede ser una traslación, una rotación o una combinación de ambas (movimiento rototraslatorio).
            1. En un movimiento plano cualquiera de un cuerpo rígido, ninguno de sus puntos está fijo a lo largo del tiempo. Sin embargo en cada instante se puede hallar un punto donde su velocidad sea nula. Una vez localizado este centro instantáneo, la velocidad de cualquier otro punto del cuerpo se podrá encontrar utilizando la ecuación de velocidad relativa. En particular algunos mecanismos están conectados mediante pasadores que se deslizan sobre ranuras o guías. El movimiento relativo se especifica convenientemente dando los movimientos de traslación y rotación del miembro que contiene la ranura, la forma de esta y la velocidad del recorrido del pasador a lo largo de dicha ranura.
              1. Centro instantáneo de velocidades La velocidad de cualquier punto ubicado sobre un cuerpo rígido puede obtenerse de una manera muy directa si se elige el punto base A como un punto que tiene velocidad cero en el instante considerado. En este caso VA= 0 y por tanto la ecuación de velocidad es: Para un cuerpo con movimiento plano general el punto seleccionado de esta manera, se le llama centro instantáneo de velocidad (CI) y se encuentra sobre el eje instantáneo de velocidad cero. Este eje es siempre perpendicular al plano de movimiento y la intersección del eje con este plano define la ubicación del CI. La magnitud de VB es simplemente Donde:
                1. Una manera general de analizar un movimiento tridimensional es ubicar un marco  . En el cual el cuerpo requiere un eje de referencia  en los que se va a determinar los movimiento de dos puntos  Y  que se encuentran separados en un mecanismo para definir el movimiento relativo de dos partículas que se mueven a lo largo de una trayectoria en rotación .
                  1. Aceleración.- así como se determinó la velocidad mediante la derivada de la posición para obtener la aceleración tenemos que derivar la velocidad.
                    Zusammenfassung anzeigen Zusammenfassung ausblenden

                    ähnlicher Inhalt

                    Öff. Recht - Streitigkeiten Verwaltungsprozessrecht
                    myJurazone
                    Maria Montessori - Hilf mir, es selbst zu tun
                    Nika L.
                    Mediengestalter Abschlussprüfung 2015
                    Jonas Deh
                    Blended Learning in der Schule umsetzen
                    Laura Overhoff
                    Grundbegriffe der Kunst
                    K Gal
                    MEKO WS 18/19
                    max knoll
                    Vetie Viro 2018
                    Anna Nie
                    Vetie Repro Bilderspaß
                    Tropsi B
                    Vetie - Lebensmittel 2022
                    Ann Borg