Set Notation

Beschreibung

Mindmap am Set Notation, erstellt von sanyusu am 04/11/2015.
sanyusu
Mindmap von sanyusu, aktualisiert more than 1 year ago
sanyusu
Erstellt von sanyusu vor etwa 9 Jahre
40
1

Zusammenfassung der Ressource

Set Notation
  1. set notation:
    1. a collection of things
      1. each item in a set is called an “element” or member
        1. written in curly brackets { }
        2. soccer = {alex, casey, drew} tennis = {drew, jade, hunter}
          1. soccer u tennis = {alex, casey, drew, jade, hunter}
        3. interval notation
          1. ( ] → not including integer, is including integer
            1. ( ) → not including integer
              1. [ ] → is including integer
              2. different notations:
                1. numbers
                  1. N - natural numbers
                    1. Q - rational numbers
                      1. R - all rational/irrational numbers
                        1. Z - integers
                        2. unions, elements, subsets
                          1. unions
                            1. ∪ - union
                              1. ∩ intersection
                              2. elements
                                1. ∅ -null set, no elements
                                  1. ∈ - is an element of
                                    1. ∉ - belongs to
                                    2. subsets:
                                      1. ⊂ - is a proper subset
                                        1. ⊄ - is not a proper subset
                                          1. ⊆ - is a subset
                                            1. ⊊ - is not a subset
                                          2. extras:
                                            1. ∶ and| - such that
                                              1. ∴ - therefore
                                                1. ∋ - contains
                                                  1. ∀ - for all
                                                    1. # -order or cardinality of a set
                                                      1. ∃ - there exists
                                                        1. A' or A∁ - complement of A
                                                      2. number lines:
                                                        1. o → hollow circle = doesn’t include the integer
                                                          1. • → filled in circle = includes integer
                                                            1. divide or multiply with - = flip the sign <>
                                                            Zusammenfassung anzeigen Zusammenfassung ausblenden

                                                            ähnlicher Inhalt

                                                            Stochastik
                                                            moodle5
                                                            Modul 2C FernUni Hagen Pflichtlektüre
                                                            Anni T-Pünktchen
                                                            Biologie - Vorraussetzungen
                                                            Kim-Mai Tran
                                                            Euro-FH // Zusammenfassung PEPS1
                                                            Robert Paul
                                                            Vetie Allgemeine Pathologie Altklausur 2015
                                                            Tropsi B
                                                            Mewa WS 18/19
                                                            Adrienne Tschaudi
                                                            Vetie Geflügel 2017
                                                            Johanna Müller
                                                            Vetie Spezielle Pathologie 2020
                                                            Fioras Hu
                                                            Vetie - Lebensmittel 2016
                                                            Kim Langner
                                                            Vetie - spez. Pathologie 2023
                                                            Christopher Groß