Metodo de Eliminacion Gauss - Jordan

Beschreibung

MAPA MENTAL SOBRE METODO DE ELIMINACION GAUSS - JORDAN
Andrey  Puentes
Mindmap von Andrey Puentes, aktualisiert more than 1 year ago
Andrey  Puentes
Erstellt von Andrey Puentes vor mehr als 7 Jahre
2197
0

Zusammenfassung der Ressource

Metodo de Eliminacion Gauss - Jordan
  1. QUE ES ?
    1. En matematicas, la eliminacion de Gauss - Jordan, llamda asi debido a Carl Friedrich Gauss y Willhelm Jordan, es un algoritmo de algebra lineal para determinar las soluciones de un sistema de ecuaciones lineales, tambie para encontrar matrices diversas. Un sistema de ecuaciones se resuelve por el metodo de Gauss cuando se obtienen soluciones mediante la reduccion del sistema dado a otro equivalente en el que cada ecuacion tiene una incognita menos que la anterior
      1. ANTECEDENTES El metodo de eliminacion de Gauss Jordan aparace en el capitulo ocho del imporntante texto matematico chino Jiuzhang suanshu o los nueve capitulos sobre el arte matematico. Su uso se ilustra en dieciocho problemas, con dedos a cinco ecuaciones. La primera referencia al libro por este titulos date del 179 D.C., pero algunas de sus partes fueron escritas tan pronto como alrededor del 150 a. C.
        1. EL ANALISIS DE SU COMPLEJIDAD La complejidad computacional de la eliminacion Guassiana es de aproximadamente N a la 3 Lo que significa el numero de operaciones que se necestian en el caso de que la matriz sea de n x n.
        2. EJEMPLOS
          1. ALGORITMO DE ELIMINACION: 1. Ir a la columna no cero extrema izquierda, 2. Si la primera fila tiene un cero en esta columna, intercambiarlo con otra que no lo tenga, 3. Luego obtener cerso debajo de este elemento delantero, sumando multiplos adeacuados del renglon superior a los renglones debajo de el, 4. Cubrir el renglon superior y repetir con el resto de los renglones, 5. Comenzando con el ultimo renglon no cero, avanzar hacia arriba: para cada renglon obtener un 1 delantero e introducir cerors arriba de este sumando multiplos correspondientes a los renglones correspondientes
            1. Supongamos que es necesario encontrar los numeros X Y Z que satisfacen simultaneamente, entonces esto es llamado "sistemas lineales de ecuaciones" . Debemos saber que el objetivo es el de reducir el sistema a otro equivalente, que tenga las mismas soluciones. Entonces las operaciones son:
            2. OTRAS FORMAS
              1. Dos formas especiales de matrices son la escalonada y la escalonada reducida. Una matriz puede tener las siguientes propiedades: 1. Todas las filas 1 estan enla parte inferior de la matriz, 2. El elemento delantero de cada fila diferente de cero, este es llamado "PIVOTE", estos estan a la derecha del elemento delantero de la fila anterior (esto supone que todos los elementos debajo de un pivote son cero); si una matriz A cumple con esas propiedades, se dice escalonada. Además, cumpliendo estas otras condiciones, decimos que la matriz se encuentra en la forma reducida de renglón escalón o tan solo. Cuando una matriz representa a un sistema de ecuaciones situaciones como tener una columna de ceros parece imposible ya que correspondería a una variable que nunca habría aparecido. Sin embargo esta situación puede presentarse (imaginemos la ecuación de un plano en el espacio en la que no aparece alguna de las componentes, por ejemplo y+z=5). Así la matriz
              2. OTRAS APLICACIONES DEL METODO
                1. Es posible usar la eliminación gaussiana para encontrar inversas de matrices n × n. Para ello se aumenta la matriz dada, digamos A con una matriz identidad, simplemente escribiendo las filas de la identidad a continuación de las de nuestra matriz A, por ejemplo dada:
                  Zusammenfassung anzeigen Zusammenfassung ausblenden

                  ähnlicher Inhalt

                  Álgebra lineal
                  Hugo Garzón
                  Sistemas de Ecuaciones Lineales
                  Feña Rodriguez K
                  Mapa conceptual Espacios Vectoriales
                  edwar samboni
                  UNIDAD 1- VECTORES, MATRICES Y DETERMINANTES
                  fabio nelson prada
                  Espacios vectoriales
                  Angelica Maria Martinez Moreno
                  VECTORES EN R2 Y R3
                  GUSTAVO ESPINOSA
                  Espacios generadores
                  edwin sarmiento buritica
                  ALGEBRA LINEAL
                  eduardo galvez3051
                  Adiciones a drogas
                  Fabio Muñoz
                  Vector
                  cl cp
                  Algebra lineal (E-Learning)
                  Benjamin Herrera Guamialamag