Dot Product

Beschreibung

Der Nutzer hat seine Fachbereichs-Information gelöscht. Notiz am Dot Product, erstellt von Gelöschter Nutzer am 20/12/2018.
Gelöschter Nutzer
Notiz von Gelöschter Nutzer, aktualisiert more than 1 year ago Mehr Weniger
Darren Hunt
Erstellt von Darren Hunt vor etwa 6 Jahre
Darren Hunt
Kopiert von Darren Hunt vor etwa 6 Jahre
11
0

Zusammenfassung der Ressource

Seite 1

The Dot Product

A type of vector multiplication. The vectors a and b must be of the same dimensions. The dot product gives a scalar number.

Example: Find the dot product of <6,-2,0> and <5,1,4>. Apply the dot product formula (next page) : = 6*5+-2*1+0*4 = 30-2 = 28 (scalar)

Example: Find the angle between <5,-1,2,-3> and <0,6,-2,-3>. Note that these two are the same dimension, n=4. First find a dot b, then find the magnitudes |a| and |b|. a dot b = 5*0+(-1)*6+2*(-2)+(-3)*(-3) = +6-4+9 = -1 |a| = sqrt(5^2+1^2+2^2+3^2) = sqrt(39) |b| = sqrt(0^2+6^2+2^2+3^2) = sqrt(49) = 7 Apply the angle formula for dot product (next page): -1=7sqrt(39)cos(theta), cos(theta)=-1/(7sqrt(39)), theta=cos^-1(-1/7sqrt(39)) = 1.5937 rad

Example: Find the acute angles at an intersection of two functions, a parabola and line. Steps: First find where the two functions intersect. Set the two equal to each other. Simplify, set equal to 0. Find values of x by factoring. Plug in these values of x into the parabola equation to find the corresponding values of y. Find the derivative of parabola, y'. Plug in the values of x found earlier. These give the slopes of the functions at x1, x2... Find the tangent vectors for each function:       For a line: take the slope of the line from the line function. ex. for a slope of three, the tangent vector is <1,3> (1 unit over, 3 units up)       For a parabola: need tangent vectors at both points of intersection.       Find the value of y' for each x (plug in the found x values into the derivative of the parabola)       For each, this is the slope.       Turn the slope into a tangent vector like the example for a line. From here, find the angles between the tangent vectors, using the theta dot product formula (next page).  

Seite 2

Equations

a dot b = scalar a dot b = |a||b|*cos(theta) |a| = sqrt(a1^2+a2^2...) vector of AB = Comp_a(b)=|b|cos(theta) Comp_a(b)= ((a dot b) / |a|) Proj_a(b) = 1/|a|*(comp_a(b)a = ((a dot b)/(|a|^2))a    (Take a, shrink it by 1 over a magnitude, then stretch by a factor of comp_a(b)

Seite 3

Properties

Commutativity: a dot b = b dot a Distributivity: (a+b) dot c = a dot c + b dot c Norm: a dot a = |a|^2 When a dot b = 0, the angle between the two is 90 degrees.

Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Deutsch Einstufungstest Niveau A2.2
SprachschuleAktiv
Psych
Mona Les
Spanische Verben
barbara91
Einführung in die Forschungsmethoden Kompakt
Angelina Idt
U10 (Print) Gestaltungsraster
Lena A.
Vetie - Tierzucht & Genetik - Key Learning Questions
Fioras Hu
BIWI - Steop 2 Teil 1
Katja Hofschneider
Tierhaltung/-hygiene Klausur 2017
Kim Langner
Vetie: Virofragen 2015
Johanna Tr
Vetie - Lebensmittelkunde 2021
Valerie Nymphe