Erstellt von Elaine del Valle
vor mehr als 8 Jahre
|
||
PARA DETERMINAR EL NÚMERO QUE SE ENCUENTRA EN EL LUGAR n : an = a1 + d( n - 1 )Donde: a1 es el primer elemento de la sucesión d es la diferencia constante en la sucsión n es la posición pedida Ejemplo: 5, 9, 13, 17, 21, ... ¿Qué número se encuentra en el lugar 24?Aplicamos la fórmula donde:a1 = 5d = 4n = 24Sustituimos: an = 5 + 4 ( 24 - 1 ) an = 5 + 4 (23) an = 5 + 92 an = 97Nuestra respuesta es: 97
PARA DETERMINAR LA POSICIÓN n DEL NÚMERO: n = ( an - a1 / d ) + 1Donde: a1 es el primer elemento de la sucesión d es la diferencia constante de la sucesión an es el número en la posición n Ejemplo: 21, 30, 39, 48, ... El número 291 ¿Qué posición ocupa en la secuencia? Donde: a1 = 21 d = 9 an = 291 Sustituimos: n = ( 291 - 21 / 9 ) + 1 n = (270 / 9 ) + 1 n = (30) + 1 n = 31Nuestra respuesta es 31.
PARA LA SUMA DE LOS PRIMEROS n NÚMEROS DE LA SUCESIÓN ARITMÉTICA: Sn = (n / 2) ( a1 + a n ) Otra opción es utilizar: Sn = (n / 2) [ 2 a1 + d ( n - 1 ) ] Donde: a1 es el primer elemento de la sucesión an es el último elemento de la sucesión n es el total de términos en la sucesión d es la diferencia constante en la sucesión Ejemplo: 8, 11, 14, 17, 20, ... ¿Cuál es la suma de los primeros 21 números de la serie?NOTA: Vamos a aplicar la segunda fórmula porque no es necesario calcular an (último elemento de la sucesión) y así nos ahorramos tiempo. Donde: n = 21 a1 = 8 d = 3Sustituimos: Sn = ( 21 / 2 ) [ 2(8) + 3 (21 - 1) Sn = (10.5) [ 16 + 3 (20) Sn = (10.5) [16 + 60] Sn = (10.5) [76] Sn = 798Nuestra respuesta es: 798
Möchten Sie kostenlos Ihre eigenen Notizen mit GoConqr erstellen? Mehr erfahren.