Differentiation Rules

Beschreibung

The next resource in our series on differentiation for high school students looks at differentiation rules. These notes contain explanations on differentiating x\n and differentiating functions. Examples of each type are presented in the form of solved equations.
Niamh Ryan
Notiz von Niamh Ryan, aktualisiert more than 1 year ago
Niamh Ryan
Erstellt von Niamh Ryan vor mehr als 7 Jahre
24
0

Zusammenfassung der Ressource

Seite 1

Differentiating \(x^n\)

This is the one of the most frequently used rules of differentiation.   \[ \text{If }y=x^n \text{ then} \frac{dy}{dx} = nx^{n-1}\]   This can be used to differentiate surds or fractions involving powers of \( x\) .   For example, \( \sqrt{x} \) can also be written as \( x^{\frac{1}{2}}\) , allowing it to be easily differentiated using the above rule.   \( \frac{3}{x}\) can also be written as \( 3x^{-1}\) , so    \[\frac{d}{dx}(\frac{3}{x})=-3x^{-2}\]  

Seite 2

Differentiating functions

\(\frac{d}{dx} \) is a linear operator.  This means it can be separated out over addition or subtraction and constants can be moved outside the operation. Therefore,  \[\frac{d}{dx}(x^m + x^n) = \frac{d}{dx}(x^m) +\frac{d}{dx}(x^n)\]   and \[ \frac{d}{dx}(kx^m) = k\frac{d}{dx}(x^m)\] where \(k\) is any constant.

Seite 3

Example 1

Example 1: Differentiate the following function: \[y=3\sqrt{x} + \frac{4}{x^2}\] Answer: As demonstrated on the previous page, we can treat the two terms in this function as if they were separate functions and their constants do not change with differentiation. First, rewrite the function using exponents instead of surds and fractions: \[ y=3x^{\frac{1}{2}} + 4x^{-2}\] and then differentiatie:\[\frac{dy}{dx} = 3(\frac{1}{2})x^{\frac{1}{2} - 1}+4(-2)x^{-2-1}= \frac{3}{2}x^{-\frac{1}{2}}-8x^{-3}\] This can be simplified to give: \[\frac{dy}{dx}=\frac{3}{2 \sqrt{x}} - \frac{8}{x^{-3}}\]

Seite 4

Example 2

Example 2: Differentiate the following function: \[y=\frac{x^{2}-3x-4}{x+1}\] Answer: Where there's a fraction with \(x\) terms on top and bottom, factorise the top before continuing. This gives:\[y=\frac{(x-4)(x+1)}{x+1} \] Clearly \((x+1)\) can be factored from top and bottom to give\[y=x-4\] which is the same as \[y=x^1-4x^0\] and then differentiate:\[\frac{dy}{dx} = 1\]  

Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Faust I
barbara91
Mitose
Cornelius Ges
PuKW STEP 4 (mögliche Prüfungsfragen/Prüfungsvorbereitung)
frau planlos
Gegensätze
Antonia C
GPSY SOPS
Simon Wirsching
Grundzüge Soziologie Richter
Kamila rURKA
WERB Uni Wien 2017/18
Denise Schmid
Vetie - Radiologie 2017
Fioras Hu
Vetie - Chirurgie 2016
Peter Christian Ponn
Onlinequiz zu MS-4.2 kapitel II
Deborah Büscher
Geflügelkrankheiten 2016
Birte Schulz