Frage 1
Frage
\(\sqrt{4x^{16}}\)=
Antworten
-
\(2x^4\)
-
\(2x^8\)
-
\(\pm 2x^4\)
-
\(\pm 2x^8\)
Frage 2
Frage
Die grafiek van \(y=2^x\) word eers in die \(y\)-as, en die resultaat in die lyn \(y=x\) gereflekteer. Die grafiek wat so ontstaan is \(y=\)
The graph of \(y=2^x\)is first reflected in the line \(y\)-axis, and the result in the line \(y=x\) . The graph that is formed is \(y=\)
Antworten
-
\(-2^x\)
-
\(2^{-x}\)
-
\(log_2 x\)
-
\(log_\frac{1}{2} x\)
Frage 3
Frage
Die waardes van/ The values of \(x\) waarvoor / for which\(logx \leq 0\)
Antworten
-
\(x<0\)
-
\(x \leq 1\)
-
\(0<x \leq 1\)
-
\(x \geq 1\)
Frage 4
Frage
Watter van die volgende reekse konvergeer:
Which of the following will converge:
Frage 5
Frage
'n Boom is 2 m hoog. Dit groei elke jaar \(\frac{3}{4}\) van die vorige jaar se hoogte. Wat is die hoogste wat dit kan word?
A tree is 2 m high. It grows each year with \(\frac{3}{4}\) of the previous year's length. What is the highest that it can become?
Frage 6
Frage
Beskou die ry:/ Determine the sequence: 1; 2; 3; 4; 5; 8; ... Die 30'ste term is:/ The 30'th term will be:
Frage 7
Frage
Vir watter waardes van \(x\) sal die reeks \(1+\frac{1+x}{2}+\frac{\left( 1 + x \right)^{2}}{4}\)+⋯ konvergeer:
For which values of \(x\) will the series \(1+\frac{1+x}{2}+\frac{\left( 1 + x \right)^{2}}{4}\)+⋯ converge::
Frage 8
Frage
Sannie spaar elke maand \(x\) rand in 'n rekening, rentekoers \(i\).p.j, maandeliks. Sy doen dit vir 25 jaar. Daarna los sy die geld in die rekening vir 'n verdere 5 jaar. 'n Formule waarmee die waarde van die rekening bepaal kan word, is
Sannie saves \(x\) rand in an account every month, interest rate \(i\), p.j, monthly. She has been doing this for 25 years. Then she leaves the money in the account for another 5 years. A formula for determining the value of the account is
Antworten
-
\(\frac{x(1+i)^{25}-1}{i}(1+i)^5\)
-
\(\frac{x(1+i)^{300}-1}{i}(1+i)^5\)
-
\(\frac{x(1+i)^{25}-1}{i}(1+i)^{60}\)
-
\(\frac{x(1+i)^{300}-1}{i}(1+i)^{60}\)
Frage 9
Frage
Bepaal die waarde van/ Determine the value of \(\sum\limits_{k=2}^{10} (5k-2)\)
Frage 10
Frage
Skryf die volgende in sigma notasie: 6+3+0+⋯ vir \(n\) terme.
Write the following in sigma notation: 6+3+0+⋯ vir \(n\) terms.
Antworten
-
\(\sum \limits_{k=1}^{n} (9-3k)\)
-
\(\sum \limits_{k=1}^{n} (9-3n)\)
-
\(\sum \limits_{k=1}^{n} (\frac{k}{2}(15-3k))\)
-
\(\sum \limits_{k=1}^{n} (\frac{k}{2}(9-3k))\)
Frage 11
Frage
Watter stelling is onwaar:/ Which statement is not true:
Antworten
-
As al drie hoeke van 'n driehoek ooreenstemmend gelyk is aan al drie hoeke van 'n ander driehoek, dan is die driehoeke gelykvormig. / If all three angles of a triangle are equal to all three angles of another triangle, then the triangles are similar.
-
As al die sye van 'n driehoek ooreenstemmend eweredig is met al drie sye van 'n ander driehoek, dan is die driehoeke gelykvormig. / If all the sides of a triangle are equaly proportional to all three sides of another triangle, then the triangles are similar.
-
Alle gelykvormige driehoeke is ook kongruent./ All similar triangles are also congruent.
-
Alle kongruente driehoeke is ook gelykvormig./ All congruent triangles are also similar
Frage 12
Frage
Die identiteit \(\frac{cos2x}{(cosx+sinx)^3}=\frac{cosx-sinx}{sin2x}\) sal ongefinieerd wees in die interval \(-90^\circ \leq x\leq 90^\circ\)
Theidentity \(\frac{cos2x}{(cosx+sinx)^3}=\frac{cosx-sinx}{sin2x}\) will be undefined in the interval \(-90^\circ \leq x\leq 90^\circ\)
Frage 13
Frage
Hoeveel oplossings sal die vergelyking \(2sinx.cosx=\frac{1}{2}\) in die interval \(-90^\circ \leq x\leq 90^\circ\) hê?
How many solutions will the equation \(2sinx.cosx=\frac{1}{2}\) have in the interval \(-90^\circ \leq x\leq 90^\circ\) ?
Frage 14
Frage
Watter van die volgende is twee moontlike oplossings van \(sin^2x-cos^2x=\frac{1}{2}\)
Which of the following are two possible solutions of \(sin^2x-cos^2x=\frac{1}{2}\)
Antworten
-
\(\pm60^\circ\)
-
\(\pm30^\circ\)
-
\(\pm45^\circ\)
-
\(\pm150^\circ\)
Frage 15
Frage
Bepaal die waarde van/ Determine the value of \(sin195^\circ\)
Antworten
-
\(\frac{\sqrt{2}-\sqrt{6}}{4}\)
-
\(\frac{-\sqrt{2}+\sqrt{6}}{4}\)
-
\(\frac{\sqrt{2}+\sqrt{6}}{4}\)
-
\(\frac{-\sqrt{2}-\sqrt{6}}{4}\)
Frage 16
Frage
As \(sin12°cos12°=\frac{2}{5}\) , dan is tan24°=
If\(sin12°cos12°=\frac{2}{5}\) , then tan24°=
Antworten
-
\(\frac{\sqrt{6}}{12}\)
-
\(\frac{4}{3}\)
-
\(\frac{\sqrt{21}}{2}\)
-
\(\frac{2}{21}\)
Frage 17
Frage
As tanθ=0,75 en cosθ<0, bepaal die waarde van sin2θ.
Iftanθ=0,75 andcosθ<0,determine the value of sin2θ.
Antworten
-
\(\frac{6}{5}\)
-
\(\frac{8}{5}\)
-
\(\frac{24}{25}\)
-
1,5
Frage 18
Frage
Bereken/ Calculate QR
Frage 19
Frage
99 Getalle se gemiddeld is 101. As 90 van hierdie getalle se gemiddeld 100 is, wat is die gemiddeld van die ander 9 getalle?
The average of 99 numbers is 101. If 90 of these numbers' average is 100, what is the average of the other 9 numbers?
Frage 20
Frage
Die grafieke \(y=f(x)\) en \(y=g(x)\) sny by \(A(\frac{-3}{2};\frac{-9}{4})\) en B(2;3). Dit sny die asse soos aangetoon. Vir watter waardes van \(x\) sal \(f(x).g(x)≤0\) ?
The graphs \(y=f(x)\) and\(y=g(x)\) intersect at \(A(\frac{-3}{2};\frac{-9}{4})\) and B(2;3). It cuts the axes as shown. For which values of \(x\) will \(f(x).g(x)≤0\) ?