Frage 1
Frage
Die grafiek van \(y=sinx\) se periode en amplitude halveer. Die vergelyking van die nuwe grafiek is
The period and the amplitude of the graph \(y=sinx\) halve. The equation of the new graph is
Frage 2
Frage
Bepaal die waarde van/ Determine the value of \(\frac{1}{cos60^\circ}+2sin150^\circ\)
Antworten
-
3
-
\(1+\sqrt{3}\)
-
\(2+\sqrt{3}\)
-
0
Frage 3
Frage
\(tan35^\circ .tan55^\circ\) =
Antworten
-
\(tan^235^\circ\)
-
\(tan^255^\circ\)
-
1
-
0
Frage 4
Frage
Watter stelling is onwaar:/ Which statement is not true:
Frage 5
Frage
Jan leen R25000 by 'n bank. Hy gaan dit in 24 gelyke paaiemente terug betaal. Sy eerste paaiement is drie maande na die lening toegestaan is. 'n Formule wat gebruik kan word om sy paaiement te bereken is:
Jan borrows R25000 from a bank. He will pay it back in 24 equal installments. His first installment was granted three months after the loan was granted. A formula that can be used to calculate its installment is:
Antworten
-
\(25000=\frac{x[1-(1+i)^{-24}]}{i}\)
-
\(25000(1+i)^3=\frac{x[1-(1+i)^{-22}}{i}\)
-
\(25000(1+i)^2=\frac{x[1-(1+i)^{-22}}{i}\)
-
\(25000(1+i)^2=\frac{x[1-(1+i)^{-24}}{i}\)
Frage 6
Frage
The parabola \(y=-2x^2-4x-3\) is shown. Which sketch is the most likely:
Frage 7
Frage
Die Venn-diaagram toon die aantal seuns wat Water Polo, Rugby en Tennis speel. Die waarskynlikheid dat 'n willekeurig gekose seun Tennis en Water Polo speel, maar nie rugby nie, is
The Venn diagram shows the number of boys playing Water Polo, Rugby and Tennis. The probability of a randomly chosen boy playing Tennis and Water Polo, but not rugby, is
Antworten
-
\(\frac{1}{3}\)
-
\(\frac{3}{25}\)
-
\(\frac{22}{125}\)
-
\(\frac{15}{121}\)
Frage 8
Frage
Gert, Jan, Koos en Piet deel 'n sak albasters in die verhouding 3 : 1 : 5 : 7. Koos en Piet het saam 48 albasters. Hoeveel het Gert?
Gert, Jan, Koos and Piet share a bag of marbles in the ratio 3: 1: 5: 7. Koos and Piet together have 48 marbles. How much does Gert have?
Frage 9
Frage
Beskou die driehoekige prisma. Bereken die buite-oppervlakte in \(cm^2\).
Consider the triangular prism. Calculate the surface area in \(cm^2\).
Frage 10
Frage
Die 4'e en 5'e term van 'n kwadratiese ry met konstante 2'e verskil van 4 is 22 en 39. Die 2'e term is
The 4th and 5th terms of a quadratic sequence with constant 2nd difference of 4 are 22 and 39. The 2nd term is
Frage 11
Frage
'n Koppie koffie se temperatuur is \(93^\circ\) C. Daarna koel dit af volgens die fromule \(T=a\times b^x+c\) waar \(x\) die tyd in ure en \(T\) die temperatuur van die koffie is. Na 2 ure is die koffie se temperatuur \(33^\circ\) C. Die waardes van \(a, b\) en \(c\) is
The temperature of a cup of coffee is \(93^\circ\) C. Then it cools according to the following foromula \(T=a\times b^x+c\) where\(x\) is the time in hours and \(T\) the temperature of the coffee.. After 2 hours the coffee's temperature is \(33^\circ\) C. The values of \(a, b\) and\(c\) are
Antworten
-
\(a=23\)
\(b=0,2\)
\(c=70\)
-
\(a=100\)
\(b=0,1\)
\(c=83\)
-
\(a=70\)
\(b=0,2\)
\(c=23\)
-
\(a=80\)
\(b=0,5\)
\(c=13\)
Frage 12
Frage
Die grafiek van \(y=\frac{a}{x+p}+q\) word getoon. Dan is
The graph of \(y=\frac{a}{x+p}+q\) is shown. Then
Antworten
-
\(a<0; p=-3; q=-2\)
-
\(a<0; p=3; q=2\)
-
\(a>0; p=-3; q=-2\)
-
\(a>0; p=3; q=-2\)
Frage 13
Frage
Die waarde van/ The value of
\(sin^21\circ +sin^22\circ + sin^23\circ+....+sin^287\circ + sin^288\circ + sin^289\circ =\)
Antworten
-
\(44\frac{1}{2}\)
-
\(44+\frac{1}{\sqrt{2}}\)
-
\(44-\frac{1}{\sqrt{2}}\)
-
\(sin^2(1^\circ + ^\circ + ..... + 99^\circ\)
Frage 14
Frage
Watter van die volgende is van die oplossings van \(sinx+cos2x=0\)
Which of the following are solutions of \(sinx+cos2x=0\)
Antworten
-
\(-60^\circ of -90^\circ\)
-
\(-60^\circ of 90^\circ\)
-
\(-30^\circ\) of \(90^\circ\)
-
\(-30^\circ\) of \(-90^\circ\)
Frage 15
Frage
Die reguitlyn \(y=\frac{3}{4}x-12\) gaan deur die punte \(P(4;9)\) en \(Q(x;y)\). Verder is \(PQ=\)15 eenhede. Dan is \(Q\) die punt
The straight line \(y=\frac{3}{4}x-12\) goes through the points \(P(4;9)\) and \(Q(x;y)\). Further \(PQ=\)15 units. Then \(Q\) is the point
Antworten
-
(16; 0)
-
(12; -3)
-
(-4; -15)
-
(8; -6)
Frage 16
Frage
Die hoogte van 'n silinder halveer en die radius verdubbel. Dan sal die volume
Halve the height of a cylinder and double the radius. Then the volume will
Frage 17
Frage
'n Stel data het 'n gemiddeld van \(\overline{x}\) en standaardafwyking van\(\sigma\). As elke data item met 5 toeneem, sal
A set of data has an average of \(\overline{x}\) and standard deviation \(\sigma\). If each data item increases by 5, then
Antworten
-
\(\overline{x}\) en/ and\(\sigma\) met 5 toeneem/ will increase by 5
-
\(\overline{x}\) met 5 toeneem en/ will increase by 5 and \(\sigma\) bly konstant / will stay constant
-
\(\overline{x}\) konsstant bly en/ stay constant and \(\sigma\) met 5 toeneem/ will increase by 5
-
\(\overline{x}\) en/ and \(\sigma\) beide konstant bly/ will both stay constant
Frage 18
Frage
Die waarde van/ The value of \( \left( -8 \right)^{\left( -3 \right)^{-1}}\)
Antworten
-
512
-
-512
-
2
-
\(-\frac{1}{2}\)
Frage 19
Frage
Watter van die volgende is 'n rasionale getal/ Which of the following is a rational number
Antworten
-
\(\pi\)
-
\(\sqrt{-1}\)
-
\(1,2\dot{3}\)
-
\(\sqrt{10}\)
Frage 20
Frage
Vir watter waardes van \(x\) sal \(\frac{\sqrt{x+3}}{x}\) reël wees?
For which values of \(x\) will\(\frac{\sqrt{x+3}}{x}\) be real?
Antworten
-
\(x=-3\)
-
\(x\geq-3\)
-
\(x<-3\)
-
\(x\geq-3; x\neq0\)