Frage 1
Frage
Rangskik/ Order \(\sqrt[3]{7}\) , \(\sqrt{5}\), \(\sqrt[4]{17}\) van klein na groot/ from small to big:
Antworten
-
\(\sqrt[3]{7}\) , \(\sqrt{5}\), \(\sqrt[4]{17}\)
-
\(\sqrt{5}\), \(\sqrt[3]{7}\) , \(\sqrt[4]{17}\)
-
\(\sqrt[4]{17}\), \(\sqrt{5}\), \(\sqrt[3]{7}\)
-
\(\sqrt[3]{7}\) , \(\sqrt[4]{17}\) , \(\sqrt{5}\)
Frage 2
Frage
'n Kubus met sy-lengte 5cm word geverf. Daarna word dit in kubusse met sy-lengte 1 cm gesny. Die hoeveelheid sye wat NIE geverf is nie, is
A cube with side length 5cm is painted. Then it is cut into cubes with side length 1 cm. The amount of sides that are NOT painted is
Frage 3
Frage
Die hoeke van 'n kubus word afgesny. Hoeveel sy-lyne het die vorm wat so ontstaan?
The corners of a cube are cut off. How many side-lines does the shape that have arisen have?
Frage 4
Frage
Die definisie van 'n skrikkeljaar is as volg: Dit is 'n skrikkeljaar indien die jaar deelbaar deur 4 is, soos 1980. Indien dit 'n eeu-jaar is, moet die jaar deelbaar deur 400 wees. 1200 was bv. 'n skrikkeljaar, maar nie 1300 nie. Bereken hoeveel skrikkeljare daar vanaf 1892 tot 2012, beide ingesluit, was.
The definition of a leap year is as follows: It is a leap year if the year is divisible by 4, such as 1980. If it is a century, the year must be divisible by 400. 1200 was e.g. a leap year, but not 1300. Calculate how many leap years there were from 1892 to 2012, both included.
Frage 5
Frage
Piet en Jan begin beide op dieselfde plek, O, fiets te ry. Piet ry teen 20km/h in 'n rigting 40° Oos van Noord. Jan ry teen 16 km/h in 'n rigting 20° Wes van Noord (sien skets). Watter antwoord is die beste skatting van die afstand tussen hulle na ½ uur?
Pete and John both start cycling in the same place, Oh. Pete drives at 20km / h in a direction 40 ° East of North. John is traveling at 16 km / h in a direction 20 ° West of North (see sketch). Which answer is the best estimate of the distance between them after ½ hour?
Frage 6
Frage
A, B en C is in dieselfde horisontale vlak en DC is 'n vertikale toring op die horisontale vlak. Die sye en hoeke is soos aangetoon in die skets. Dan is \(h\) =
A, B and C are in the same horizontal plane and DC is a vertical tower on the horizontal plane. The sides and angles are as shown in the sketch. Then \(h\) =
Antworten
-
\(\frac{1}{2cos^2\theta}\)
-
\(\frac{tan\theta}{2cos^2\theta}\)
-
\(\frac{\sqrt{3}}{2cos^2\theta}\)
-
\(\frac{tan\theta}{2sin\theta}\)
Frage 7
Frage
Die funksie gedefinieer deur/ The function defiined by \(f(x)=-2x^2-8x+17\) het ’n/ has a
Antworten
-
minimum \(y\)-waarde en ’n negatiewe \(y\)-afsnit/ minimum \(y\)-value and a negative \(y\)-intercept
-
maksimum \(y\)-waarde en ’n positiewe \(y\)-afsnit/ maximum \(y\ value and a positive \(y\ intercept
-
minimum \(y\)-waarde en ’n positiewe \(y\)-afsnit/ minimum \(y\)-value and a positive \(y\)-intercept
-
maksimum \(y\)-waarde en ’n negatiewe \(y\)-afsnit/ maximum \(y\ value and a negative \(y\ intercept
Frage 8
Frage
Die draaipunt van die funksie gedefinieer deur \(f(x)=-2x^2-8x+17\) is het 'n draaipunt by
The turning point of the function defined by \(f(x)=-2x^2-8x+17\) has a turning point at
Antworten
-
(-4; 81)
-
(-4; 17)
-
(-2; 41)
-
(-2; 25)
Frage 9
Frage
Die uitdrukking/ The expression \(\sqrt{-x^2+6x-5}\) het ’n/ has a
Antworten
-
maksimum waarde van 4/ maximum value of 4
-
maksimum waarde van 2/ maximum value of 2
-
minimum waarde van \(\sqrt{17}\) / minimum value of \(\sqrt{17}\)
-
minimum waarde van \(\sqrt{41}\)/ minimum value of \(\sqrt{41}\)
Frage 10
Frage
Die grafiek van \(y=-2x^2-8x+17\) word gereflekeer in die x-as en daarna in die y-as. Die vergelyking van die grafiek wat so ontstaan is
The graph of \(y=-2x^2-8x+17\) is reflected in the x-axis and then in the y-axis.The equation of the graph that is formed by this is
Antworten
-
\(f(x)=-2x^2-8x-17\)
-
\(f(x)=-2x^2+8x+17\)
-
\(f(x)=2x^2-8x-17\)
-
\(f(x)=2x^2+8x+17\)
Frage 11
Frage
As/ If \(-1<x<0\), watter getal is die kleinste/ which number is the smallest?
Antworten
-
\(\frac{10}{x}\)
-
\(x\)
-
\(\frac{x}{20}\)
-
\(x\times 10^{-2}\)
Frage 12
Frage
\(cos23°sin43°-cos43°sin23° = \)
Antworten
-
\(sin(-20°)\)
-
\(sin20°\)
-
\(cos(-20°)\)
-
\(cos(20°)\)
Frage 13
Frage
ABCD is ’n vierkant met sy-lengte \((x-1)\) cm. Die oppervlakte van reghoek ABFE=\((x^2+x-2)\) cm2. FC = .... cm.
ABCD is a square with side length \((x-1)\) cm. The area of rectangle ABFE = \((x^2+x-2)\) cm2. FC =... cm
Frage 14
Frage
Die hoogtehoek na die top van ’n toring A vanaf die top van toring B is 30°. Die dieptehoek na die voet van toring B vanaf die top van toring A is 60 °. Toring B is 100 m hoog. Die voet van A en B is op dieselfde horisontale hoogte. Die hoogte van toring A is
The angle of elevation to the top of a tower A from the top of tower B is 30 °. The angle of depth to the foot of tower B from the top of tower A is 60 °. Tower B is 100 m high. The foot of A and B is at the same horizontal height. The height of tower A is
Antworten
-
60
-
\(60\sqrt{3}\)
-
75
-
\(75\sqrt{3}\)
Frage 15
Frage
Die skets stel ’n vierkantige kubus, sy-lengte a met ’n sirkelopening bo. Die deursnee van die opening is gelyk aan die helfte van die diagonaal AB. Die buite-oppervlakte van die boks is
The sketch depicts a square cube, side length a with a circular opening. The diameter of the opening is
equal to half of the diagonal AB. The surface area of the box is
Antworten
-
\(6a^2-\frac{\pi a^2}{4}\)
-
\(6a^2-2\pi a^2\)
-
\(6a^2-\frac{\pi a^2}{8}\)
-
\(6a^2-\frac{\pi a^2}{2}\)
Frage 16
Frage
Die volume van 'n reghoekige kubus is gelyk aan 1000 \(m^3\). Die lengte, breedte en wydte word vergroot met 50%. Die volume vergroot met
The volume of a rectangular cube is equal to 1000 \(m^3\). The length, width and width are increased by 50%. The volume increases by
Frage 17
Frage
'n Ogief word getoon. Jy kan die gebruik om die volgende te bepaal: die
An ogive is shown. You can use it to determine the following: the
Antworten
-
gemiddeld/ average
-
variansie/ variance
-
modus/ mode
-
mediaan/ median
Frage 18
Frage
As/ If \(a^2-b^2=30\) en/ and \(a-b= 5\), dan sal/ then \(a+b=\)
Frage 19
Frage
'n Sirkel met middelpunt (1; -1) gaan deur A(4; 3). Laat A die oppervlakte van die sirkel wees. Watter van die volgende is 'n goeie skatting van A:
A circle with center (1; -1) passes through A (4; 3). Let A be the area of the circle. Which of the following is a good estimate of A:
Frage 20
Frage
Die minimum waarde van/ The minimum value of \(1+ 2cos(4x)\) is