Zusammenfassung der Ressource
Frage 1
Frage
Dadas as matrizes \(A = \left( \begin{array}{rr}
3 & -1 \\
4 & 5
\end{array}\right)\) e \(B = \left( \begin{array}{rr}
2 & 3 \\
-8 & 10
\end{array}\right)\), marque a alternativa que fornece \(3A-\frac{1}{2}B\).
Antworten
-
\(\left( \begin{array}{rr}
8 & -\frac{9}{2} \\
16 & 10
\end{array}\right)\)
-
\(\left( \begin{array}{rr}
2 & -\frac{4}{2} \\
16 & 10
\end{array}\right)\)
-
\(\left( \begin{array}{rr}
-8 & \frac{9}{2} \\
-16 & -10
\end{array}\right)\)
-
\(\left( \begin{array}{rr}
3 & -\frac{9}{2} \\
6 & 1
\end{array}\right)\)
Frage 2
Frage
Calcular a matriz \(X\) na equação \(3X-A+2B=0\), sabendo que \(A=\left( \begin{array}{rr}
8 & -5 \\
-6 & 1
\end{array}\right)\), \(B = \left( \begin{array}{rr}
1 & \frac{1}{2} \\
3 & 4
\end{array}\right)\) e \(0\) é a matriz nula.
Antworten
-
\(X=\left( \begin{array}{rr}
2 & -2 \\
-4 & -\frac{7}{3}
\end{array}\right)\)
-
\(X=\left( \begin{array}{rr}
-2 & 2 \\
4 & -\frac{7}{3}
\end{array}\right)\)
-
\(X=\left( \begin{array}{rr}
1 & -1 \\
-2 & -\frac{4}{3}
\end{array}\right)\)