Mathe 2

Beschreibung

Bachelor Mathe Quiz am Mathe 2, erstellt von India Rose am 23/06/2017.
India Rose
Quiz von India Rose, aktualisiert more than 1 year ago
India Rose
Erstellt von India Rose vor mehr als 7 Jahre
8
0

Zusammenfassung der Ressource

Frage 1

Frage
Wie wird die partielle Integration richtig durchgeführt?
Antworten
  • ∫ ( f(x) * g'(x) ) dx = f(x) * g(x) - ∫ ( f'(x) * g(x) ) dx
  • ∫ ( f(x) * g'(x) ) dx = f(x) * g(x) + ∫ ( f'(x) * g(x) ) dx
  • ∫ ( f(x) * g'(x) ) dx = f(x) * g(x) - ∫ ( f(x) * g(x) ) dx
  • ∫ ( f(x) * g(x) ) dx = f(x) * g(x) - ∫ ( f'(x) * g(x) ) dx

Frage 2

Frage
Wie lautet die Formel zur Berechnung von ak?
Antworten
  • ak = (π / 2) (-π)∫(π) ( f(x) * cos(k*x ) ) dx
  • ak = (1 / π) (-e)∫(π) ( f(x) * cos(k*x ) ) dx
  • ak = (1 / π) (-π)∫(π) ( f(x) * cos(k*x ) ) dx
  • ak = (1 / π) (-π)∫(π) ( f(x) * sin(k*x ) ) dx

Frage 3

Frage
Wie lautet die Formel zur Berechnung von bk?
Antworten
  • bk = (1 / π) (-π)∫(π) ( f(x) * sin(e*x ) ) dx
  • bk = (1 / π) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
  • bk = (π / 2) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
  • bk = (1 / π) (-π)∫(π) ( -f(x) * -sin(k*x ) ) dx

Frage 4

Frage
Die Formel von a0 lautet wie folgt: ak = (1 / π[blank_start])[blank_end]
Antworten
  • ) (-π)∫(π) ( f(x) * cos(k*x) ) dx
  • ) (-π)∫(-π) ( -f(x) ) dx
  • ) (-π)∫(π) ( -f(x) ) dx
  • ) (-π)∫(π) ( f(x) ) dx

Frage 5

Frage
Wie lautet die Formel für die Fourieranalyse?
Antworten
  • f(x) = (a0 / 2) + (∞)∑ (k=1) ( (ak * cos(k*x) + bk *sin(k*x) )
  • f(x) = (a0 / 2) + (∞)∑ (k=1) ( (bk * cos(k*x) + ak *sin(k*x) )
  • f(x) = (a0 / 2) + (∞)∑ (k=1) ( (ak * sin(k*x) + bk *sin(k*x) )
  • f(x) = (a0 / 2) - (∞)∑ (k=1) ( (ak * cos(k*x) - bk *sin(k*x) )

Frage 6

Frage
Wie lautet die summierte Rechtecksformel?
Antworten
  • ∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( b - a ) / n ) * f(xn-1)
  • ∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( a - b ) / n ) * f(xn-1)
  • ∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( b - a ) / n ) * f(xn)
  • ∫ ( f(x) ) dx = (( b - a ) / b ) * f(x0) + ... + (( b - a ) / n ) * f(xn-1)

Frage 7

Frage
Wie lautet die Trapezformel?
Antworten
  • ∫ ( f(x) ) dx = ( b - a ) * (( f(a) + f(b) ) / 2 )
  • ∫ ( f(x) ) dx = ( a - b ) * (( f(a) + f(b) ) / 2 )
  • ∫ ( f(x) ) dx = ( b - a ) * (( f(a) + f(b) ) / 4 )
  • ∫ ( f(x) ) dx = ( b - a ) * (( f(n) + f(a) ) / 2 )

Frage 8

Frage
Wie lautet die Simpsonregel ? (Summierte Kepplersche Fassregel?)
Antworten
  • ∫ ( f(x) ) dx = (( b - a ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
  • ∫ ( f(x) ) dx = (( a - b ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
  • ∫ ( f(x) ) dx = (( b - a ) / (2*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
  • ∫ ( f(x) ) dx = (( b - a ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(xn-2) + 4 * f(xn-1) + f(xn) )

Frage 9

Frage
Wie berechnet sich die Bogenlänge von Kurven?
Antworten
  • L = √( ( f(b) + f(a) )² + ( g(b) + g(a) )² )
  • L = √( ( f(b) - f(a) )² - ( g(b) - g(a) )² )
  • L = √( ( f(b) - f(b) )² + ( g(a) - g(a) )² )
  • L = √( ( f(b) - f(a) )² + ( g(b) - g(a) )² )

Frage 10

Frage
Wie berechnet man den nächsten Schritt im De Casteljau Algorithmus?
Antworten
  • ( 1 - t ) * P0 + t * P1
  • ( 1 - t ) * P1 - t * P0
  • t * P0 + (1 - t ) * P1
  • t * P0 + t * P1

Frage 11

Frage
Wie funktioniert das Newton-Verfahren?
Antworten
  • g(x) = x * (f(x)/f'(x))
  • g(x) = x / (f(x)/f'(x))
  • g(x) = x + (f(x)/f'(x))
  • g(x) = x * (F(x)/f'(x))
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Abitur 2016 Berlin / Brandenburg - Themen & Übersicht
Laura Overhoff
Übersicht - Analytische Geometrie
Laura Overhoff
Analytische Geometrie
Laura Overhoff
Abitur 2016 Hessen - Themen & Übersicht
Laura Overhoff
Stochastik
Laura Overhoff
Untersuchung von ganzrationalen Funktionen
Laura Overhoff
Mathe Themen
Junsoo Kim
Die Physiker, Friedrich Dürrenmatt 1962 (Neufassung 1980)
p.lunk
Verben mit Präpositionen
Gamze Ü
Φαρμακολογία 1 (Ερωτήσεις)
Lampros Dimakopoulos
Vetie Histopatho 2017
Anne Heyne