GRE Study Linear Algebra

Beschreibung

Karteikarten am GRE Study Linear Algebra, erstellt von Marissa Miller am 05/10/2015.
Marissa Miller
Karteikarten von Marissa Miller, aktualisiert more than 1 year ago
Marissa Miller
Erstellt von Marissa Miller vor etwa 9 Jahre
8
1

Zusammenfassung der Ressource

Frage Antworten
Number of Solutions to a Linear System 0 solutions (inconsistent) 1 solution (consistent) infinitely many solutions (consistent)
Dot Product \( \vec{u}\cdot\vec{v} = u_{1}v_{1} + u_{2}v_{2} + \ldots + u_{n}v_{n}\)
Socks and Shoes Theorem \((AB)^{-1} = A^{-1}B^{-1} \)
Number of free variables = number of unknowns - number of nonzero rows in echelon matrix
Solution to \(A\vec{x} = \vec{b} \) if \(A\) is invertible \(\vec{x} = A^{-1}\vec{b} \)
Gaussian Elimination 1) augmented matrix 2) reduce to echelon form 3) backwards sub
Reducing to Echelon form options > multiply row by constant > interchange two rows > add multiple of another row
Inverse of a 2 by 2 Matrix \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] \[ A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]
Vector Space > closed under addition and scalar multiplication > must contain \(\vec{0} \)
Nullspace > set of all solutions to \(A\vec{x} = \vec{0} \) > if a matrix is invertible, the only solution to \(A\vec{x} = \vec{0} \) is the trivial one
Linear Combination \(k_{1}\vec{v_{1}} + k_{2}\vec{v_{2}}+ \ldots k_{n}\vec{v_{n}}\)
Span set of all linear combinations of vectors
Linearly Independent If \(k_{1}\vec{v_{1}} + k_{2}\vec{v_{2}}+ \ldots k_{n}\vec{v_{n}} = \vec{0}\) is only true for \(k_{i} = 0\)
Basis collection of linearly independent vectors that span a space
Dimension number of vectors in a space
To determine of vectors are linearly independent... ...echelon the vectors; any free variables means they are dependent
Cross Product \(\vec{u}\times\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{vmatrix} \)
Equation for plane through two vectors > cross product > use cross product to get a normal vector \( (a b c) \) > plane: \(ax +by +cz = 0\)
Column Rank max number of linearly independent columns
Row Rank max number of linearly independent rows
Rank = Row rank = column rank
Column Space for an m by n matrix, CS is a subspace of \( R^{m}\) spanning the columns
dim(CS(A)) = rank(A)
Basis for CS > echelon form of \(A^{T}\) > find number of independent columns > pick those columns
To see if \(\vec{b}\) is in CS(A)... ...see if there is a solution to \(A\vec{x} = \vec{b}\)
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Alle Länder der Welt und ihre Hauptstädte
JohannesK
Newtonsche Gesetze
JohannesK
Allgemeine Psychologie
CharlotteSc
Staaten und Hauptstädte Europas
Peter Kasebacher
Enzyme
Cornelius Ges
KORRE VO - Fragenkatalog
Anja Freiler
Folien: Systemtheorie
tschiggli
Netzwerkdienste
DFairy
U3 Netzwerkprotokolle
Lena A.
Projektmanagement Uni Due
Awash Kaul
Vetie Berufsrecht 2020 !
Alena Gesing