Erstellt von Dominique TREMULOT
vor mehr als ein Jahr
|
||
Frage | Antworten |
The magnitude | The absolute value |
The unit circle | Le cercle unité le cercle trigonométrique |
A complex number | Un nombre complexe |
The real part of \(z\) | La partie réelle de \(z\) |
The imaginary [ɪˈmædʒɪnəri] part of \(z\) | La partie imaginaire de \(z\) |
The set of real numbers is a subset of the set of complex numbers | \(\mathbb{R}\subset \mathbb{C}\) |
The Argand diagram | Invented by Jean-Robert Argand (1768-1822) is used to represent numbers on the complex plane |
The modulus /ˈmɒdjələs/ of a complex number \(z\) | The distance from the origin to the complex number on the Argand diagram |
The conjugate /ˈkɒndʒəɡeɪt/ of a complex number | Its reflexion in the real axis |
A polar /ˈpəʊlə(r)/ form of a complex number \(z=x+y\text{i}\) | \(z=r\left[\cos(\theta)+\text{i}\sin(\theta)\right]\) where \(r=|z|=\sqrt{x^2+y^2}\) and \(\theta\) is an argument /ˈɑːɡjumənt/ of \(z\) |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.