Erstellt von Bill Andersen
vor mehr als 8 Jahre
|
||
Frage | Antworten |
\[ \int k \, \textrm{d}x =\] | \[kx +C\] |
\[ \int \, \textrm{d}x =\] | \[x +C\] |
\[ \int 0 \, \textrm{d}x =\] | \[C\] |
\[ \int k \, f(x) \, \textrm{d} x =\] | \[ k \int f(x) \, \textrm{d} x\] |
\[ \int \big ( f(x) \pm g(x) \big ) \, \textrm{d} x =\] | \[ \int f(x) \, \textrm{d} x \pm \int g(x) \, \textrm{d} x \] |
\[ \int x^n \, \textrm{d} x = \] | \[ \frac {1}{n+1} \, x^{n+1} + C \] |
\[ \int \sin(x) \, \textrm{d}x =\] | \[-\cos(x) + C \] |
\[ \int \cos(x) \, \textrm{d}x =\] | \[\sin(x) + C \] |
\[ \int \sec^2(x) \, \textrm{d}x =\] | \[\tan(x) + C \] |
\[ \int \csc^2(x) \, \textrm{d}x =\] | \[-\cot(x) + C \] |
\[ \int \sec(x)\tan(x) \, \textrm{d}x =\] | \[\sec(x) + C \] |
\[ \int \csc(x)\cot(x) \, \textrm{d}x =\] | \[-\csc(x) + C \] |
\[ \sum_{i=1}^n c = \] | \[ n \cdot c \] |
\[ \sum_{i=1}^n i = \] | \[ \frac{n(n+1)}{2} \] |
\[ \sum_{i=1}^n i^2 = \] | \[ \frac{n(n+1)(2n+1)}{6} \] |
\[\int \frac{1}{1+x^2}\,dx=\tan^{-1}x+C\] | \[\tan^{-1}x+C\] |
Möchten Sie mit GoConqr kostenlos Ihre eigenen Karteikarten erstellen? Mehr erfahren.