Jackie Grant
Quiz by , created more than 1 year ago

Diagnostic Maths Test Quiz on Algebra, created by Jackie Grant on 02/02/2017.

444
0
0
Jackie Grant
Created by Jackie Grant almost 8 years ago
Close

Algebra

Question 1 of 5

1

\(\rm{The \ acceleration, \ a \ of \ an \ object \ is \ given \ by : \ } a=\frac{v_f-v_i}{t}\)

\( \rm{where \ v_f \ is \ the \ final \ velocity, \ v_i \ is \ the \ initial \ velocity, \ and \ t \ is \ the \ time \ interval.}\)

\( \rm{ \ Rearrange \ this \ equation \ to \ make \ v_i \ the \ subject. }\)

Select one of the following:

  • \( v_i = at-v_f \)

  • \( v_i = a + t -v \)

  • \( v_i = a + t + v_f \)

  • \( v_i=\frac{at}{v_f} \)

  • \( v_i = v_f-at \)

Explanation

Question 2 of 5

1

\( E = mgh + \frac{1}{2}mv^2 \)

\(\rm{Rearrange \ this \ equation \ for \ v}\)

Select one of the following:

  • \( v = \sqrt{2 ( \frac{E}{m}-gh ) } \)

  • \(v = \sqrt{\frac{1}{2} (\frac{E}{m}-gh ) } \)

  • \( v = \sqrt{2 (E-mgh)} \)

  • \( v = \sqrt{\frac{2}{m}(E-gh)} \)

  • \( v = \sqrt{\frac{m}{2}(E-gh)} \)

Explanation

Question 3 of 5

1

\(\rm{If \ } \omega = \frac{2\pi}{\it T}, \rm{ \ and \ } \it k=\it m\omega^2, \rm{ \ what \ is \ T \ in \ terms \ of \ m \ and \ k?} \)

Select one of the following:

  • \( T=2\pi \sqrt{\frac{m}{k}} \)

  • \( T = \sqrt{2\pi\frac{m}{k}} \)

  • \( T = 2\pi \sqrt{\frac{k}{m}} \)

  • \(T= \sqrt{2\pi\frac{k}{m}} \)

  • \( T = 4\pi^2 \sqrt{\frac{m}{k}} \)

Explanation

Question 4 of 5

1

\( P_2 = \rho g h + P_1 \ {\rm and} \ Q = \frac{\pi R^4(P_2−P_1)}{8\eta L}. \\ \rm Eliminate \ {\it P_1} \ and \ {\it P_2} \ and \ write \ an \ equation \ for \ {\it h} \ in \ terms \ of \ \it Q, \ R, \ ρ, \ g, \ \eta \ {\rm and} \ L. \)

Select one of the following:

  • \( h = \frac{8 \eta L Q}{\pi R^4 \rho g} \)

  • \( h = \frac{8 \eta L Q}{\pi R^4 } - \rho g \)

  • \( h = \frac{8 \eta L Q - \pi R^4}{\pi R^4 \rho g} \)

  • \( h = \frac{8 \eta L Q - \pi R^4}{\rho g} \)

  • \( h = \frac{ \pi R^4 - 8 \eta L Q }{ \rho g} \)

Explanation

Question 5 of 5

1

\( \rm{ Rearrange:} \)

\[ \sigma_\rho = \frac{\it m}{\it l^3}\sqrt{ \left(\frac{\sigma_{\it m}}{\it m}\right)^2 + 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2} \]

\(\rm{for \ \sigma_{\it m}} \)

Select one of the following:

  • \[ \sigma_{\it m} = \it m\sqrt{ \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 - 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2} \]

  • \[ \sigma_{\it m} = \it m\sqrt{ \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 + 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2} \]

  • \[ \sigma_{\it m} = \frac{\it m}{\it l^3} \sqrt{ \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 - 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2} \]

  • \[ \sigma_{\it m} = \sqrt{\it m \left( \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 - 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2 \right)} \]

Explanation