Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Jackie Grant
Quiz by , created more than 1 year ago

Diagnostic Maths Test Quiz on Algebra, created by Jackie Grant on 02/02/2017.

455
0
0
Jackie Grant
Created by Jackie Grant about 8 years ago
Rate this resource by clicking on the stars below:
1 2 3 4 5 (0)
Ratings (0)
0
0
0
0
0

0 comments

There are no comments, be the first and leave one below:

Close

Algebra

Question 1 of 5 Question 1 of 5

1

The acceleration, a of an object is given by: a=vfvit

where vf is the final velocity, vi is the initial velocity, and t is the time interval.

 Rearrange this equation to make vi the subject.

Select one of the following:

  • vi=atvf

  • vi=vfat

  • vi=a+t+vf

  • vi=atvf

  • vi=a+tv

Explanation

Question 2 of 5 Question 2 of 5

1

E=mgh+12mv2

Rearrange this equation for v

Select one of the following:

  • v=12(Emgh)

  • v=2(Emgh)

  • v=2(Emgh)

  • v=m2(Egh)

  • v=2m(Egh)

Explanation

Question 3 of 5 Question 3 of 5

1

If ω=2πT, and k=mω2, what is T in terms of m and k?

Select one of the following:

  • T=2πkm

  • T=2πmk

  • T=2πkm

  • T=2πmk

  • T=4π2mk

Explanation

Question 4 of 5 Question 4 of 5

1

P_2 = \rho g h + P_1 \ {\rm and} \ Q = \frac{\pi R^4(P_2−P_1)}{8\eta L}. \\ \rm Eliminate \ {\it P_1} \ and \ {\it P_2} \ and \ write \ an \ equation \ for \ {\it h} \ in \ terms \ of \ \it Q, \ R, \ ρ, \ g, \ \eta \ {\rm and} \ L.

Select one of the following:

  • h = \frac{8 \eta L Q - \pi R^4}{\rho g}

  • h = \frac{8 \eta L Q}{\pi R^4 } - \rho g

  • h = \frac{ \pi R^4 - 8 \eta L Q }{ \rho g}

  • h = \frac{8 \eta L Q - \pi R^4}{\pi R^4 \rho g}

  • h = \frac{8 \eta L Q}{\pi R^4 \rho g}

Explanation

Question 5 of 5 Question 5 of 5

1

\rm{ Rearrange:}

\sigma_\rho = \frac{\it m}{\it l^3}\sqrt{ \left(\frac{\sigma_{\it m}}{\it m}\right)^2 + 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2}

\rm{for \ \sigma_{\it m}}

Select one of the following:

  • \sigma_{\it m} = \it m\sqrt{ \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 - 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2}

  • \sigma_{\it m} = \it m\sqrt{ \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 + 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2}

  • \sigma_{\it m} = \sqrt{\it m \left( \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 - 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2 \right)}

  • \sigma_{\it m} = \frac{\it m}{\it l^3} \sqrt{ \left(\frac{\sigma_\rho l^3}{\it m}\right)^2 - 3 \left(\frac{\sigma_{\it l}}{\it l} \right)^2}

Explanation