Question | Answer |
Sinθ | Opposite/Hypotenuse |
Cosθ | Adjacent/Hypotenuse |
Tanθ | Opposite/Adjacent |
Secθ | Hypotenuse/Adjacent |
Cosecθ | Hypotenuse/Opposite |
Cotθ | Adjacent/Opposite |
Reciprocal of Sinθ | 1/cosecθ |
Reciprocal of Cosθ | 1/secθ |
Reciprocal of Tanθ | 1/cotθ OR sinθ/cosθ |
Reciprocal of Secθ | 1/cosθ |
Reciprocal of Cosecθ | 1/sinθ |
Reciprocal of Cotθ | 1/tanθ OR cosθ/sinθ |
Cosec^2(θ) | Cot^2(θ) + 1 |
Sec^2(θ) | 1+tan^2(θ) |
Complementary Angles | Sum of two angles add up to 90dg |
Polar Coordinates (x,y) become | (r,θ) |
Pythagoras' Theorem | x^2+y^2=r^2 |
30dg | pi/6 rad |
45dg | pi/4 rad |
60dg | pi/3 rad |
90dg | pi/2 rad |
180 dg | pi |
360dg | 2pi |
1 rad | 180/pi |
1 is equal to | cos^2x+sin^2x |
Cos(A+B)= | CosACosB - SinASinB |
Sin(A+B)= | SinACosB+CosASinB |
Tan(A+B)= | TanA+TanB/1-TanATanB |
State the definition of A,B,C and D: y=Asin(Bx+C)+D | A- Amplitude, B=Period (2pi/B), C- Horizontal Shift and D= Vertical Shift |
Sin(2a) | 2sinacosa |
Cos(2a) in terms of Cos and Sin | Cos^2a-Sin^2a |
Cos(2a) in terms of Sin | 1-2sin^2a |
Cos(2a) in terms of Cos | 2Cos^2a-1 |
Want to create your own Flashcards for free with GoConqr? Learn more.