Created by Paula Espinal
almost 5 years ago
|
||
Question | Answer |
Resolución de ecuaciones cuadraticas, usando el metodo de factorizacion. | Cuando un polinomio es igual a cierto valor (ya sea un entero u otro polinomio), el resultado es una ecuación. |
Una ecuación que puede ser escrita de la forma ax2 + bx + c = 0 se llama ecuación cuadrática. | Podemos resolver estas ecuaciones cuadráticas usando las reglas del álgebra, aplicando técnicas de factorización donde sea necesario, y usando la Propiedad Cero de la Multiplicación. |
La Propiedad Cero de la Multiplicación establece (¡en términos algebraicos, por supuesto!) algo que todos siempre hemos sabido: si el producto de dos números es 0, entonces por lo menos uno de los factores es 0. | Propiedad Cero de la Multiplicación Si ab = 0, entonces ya sea a = 0 o b = 0, o ambos a y b son 0. |
Por ejemplo: | |
En este punto hemos factorizado completamente el lado izquierdo de la ecuación. Si sólo quisiéramos factorizar la expresión, podríamos parar aquí, pero recuerda que estamos resolviendo a de la ecuación. | Aquí es donde usamos la Propiedad Cero de la Multiplicación. Ya que toda la expresión es igual a cero, sabemos que por lo menos uno de los términos, 5a o (a + 3), tiene que ser igual a cero. Vamos a continuar con la solución de este problema igualando cada término a cero y resolviendo las ecuaciones. |
Resultan dos valores posibles de a: 0 y -3. (Estos valores también se llaman raíces de la ecuación.) Para comprobar nuestras respuestas, podemos sustituir ambos valores directamente en nuestra ecuación original y ver si obtenemos una expresión válida para cada una. | |
Sustituir estos valores en la ecuación original produce dos expresiones correctas, entonces sabemos que nuestros valores son correctos. Esta ecuación cuadrática, 5a2 + 15a = 0, tiene dos raíces: 0 y -3. | |
Podemos usar el Producto Cero de la Multiplicación para resolver ecuaciones cuadráticas de la forma ax2 + bx + c = 0. Primero factorizamos la expresión, y luego resolvemos cada una de las raíces. | |
La solución de esta ecuación es r = 2 o r = 3, ya que ambos valores de r resultarán en una expresión válida. (¿Escéptico? Sustituye r por los valores 2 y 3 en la ecuación original. Te esperamos.) | |
Cuando usamos la Propiedad Cero de la Multiplicación para resolver una ecuación cuadrática, necesitamos asegurarnos que la ecuación este igualada a cero. Algunas veces esto requerirá de mover los términos para que quede 0 en un lado de la ecuación. | Como un ejemplo, piensa en la ecuación 12x2 + 11x + 2 = 7. Podríamos factorizar el trinomio del lado izquierdo de la ecuación tal como esta, pero nos quedaría la ecuación (4x + 1)(3x + 2) = 7. ¡Y es hasta aquí a donde podemos llegar! Esta nueva ecuación nos dice que los dos factores, (4x + 1) y (3x + 2), son iguales a 7 cuando son multiplicados. Igualar cada factor a 7 y luego resolver la ecuación tampoco nos ayuda; no estamos buscando los factores que son 7; sino los factores que, cuando se multiplican, son iguales a 7. Es decir, ¡no podemos usar la Propiedad Cero de la Multiplicación cuando no hay un cero en el otro lado de la ecuación! |
El ejemplo siguiente muestra cómo resolver una ecuación cuadrática donde ningún lado es originalmente igual a cero. (Nota que la secuencia de factorización ha sido acortada.) |
Want to create your own Flashcards for free with GoConqr? Learn more.