Cross-Domain RS: Survey

Description

Survey sobre o estado da arte de Sistemas de Recomendadores Cross-Domain.
fabiopaiva
Mind Map by fabiopaiva, updated more than 1 year ago
fabiopaiva
Created by fabiopaiva over 10 years ago
39
0

Resource summary

Cross-Domain RS: Survey
  1. Abordagens baseadas em Modelo de Usuário
    1. Cross-system user modeling and personalization on the social web (Abel et al, 2011)
      1. Mediation of user models for enhanced personalization in recommender systems (Berkovsky et al, 2008)
        1. A multi-agent smart user model for cross-domain recommender systems (Gonzáles et al, 2005)
          1. Semantic modelling of user interests based on cross-folksonomy analysis (Szomszor et al, 2008)
            1. Cross domain recommendation based on multi-type media fusion (Tan et al, 2013)
              1. Contextualization, User Modeling and Personalization in the Social Web (Doutorado: Abel, 2011)
                1. Exploram modelos de usuário para capturar as preferências sobre itens dos domínios envolvidos.
                2. Abordagens para estabelecer relações entre características do domínio
                  1. Cross-domain recommender systems (Cremonesi et al, 2011)
                    1. Tags as Bridges between Domains: Improving Recommendation with Tag-Induced Cross-Domain Collaborative Filtering (Shi et al, 2011)
                      1. CrosSing: A framework to develop knowledge-based recommenders in cross domains(Mestrado: Azak, 2010)
                        1. How to recommend music to film buffs: enabling the provision of recommendations from multiple domains (Doutorado: Loizou, 2009)
                          1. A generic semantic-based framework for cross-domain recommendation (Tobias et al, 2011)
                            1. Location-adapted music recommendation using tags (Kaminskas and Ricci, 2011)
                              1. Normalmente aplicada a relações de domínio baseada em conteúdo
                                1. A semantic-based framework for building cross-domain networks: Application to item recommendation (Mestrado: Tobías et al, 2013)
                                  1. Building Ontologies for Cross-domain Recommendation on Facial Skin Problem and Related Cosmetics (Moe & Aung, 2014)
                                    1. Um método para criar ontologias aplicas em cross-domain.
                                    2. Context Aware Cross-domain based Recommendation (Moe & Aung, 2014)
                                      1. O contexto é construído a partir das respostas que o usuário dá ao sistema. Por exemplo: a) há manchas brancas no seu rosto? b) O centro delas é escuro?
                                      2. A Framework for Cross-domain Recommendation in Folksonomies (Guo & Chen, 2013)
                                        1. Cold-Start Management with Cross-Domain Collaborative Filtering and Tags (Enrich et al,2013)
                                          1. Exploraram relações explícitas entre características dos domínios.
                                          2. Abordagens baseadas em Transfer Learning
                                            1. Improving Users’ Acceptance in Recommender System (Doutorado: Wei, 2013)
                                              1. Framework que integra informações de redes sociais com dados de cross-domain.
                                              2. Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction (Li et al, 2009)
                                                1. Recentemente tem sido aplicadas à Filtragem Colaborativa.
                                                  1. Transfer learning for collaborative filtering via a rating-matrix generative model (Li et al, 2009)
                                                    1. Transfer learning in collaborative filtering for sparsity reduction (Pan et al, 2010)
                                                      1. Multi-domain collaborative filtering (Zhang et al, 2010)
                                                        1. Cross-domain Recommendations based on semantically-enhanced User Web Behavior (Doutorado: Hoxha, 2014)
                                                          1. Propõe um modelo formal do comportamento de navegação do usuário
                                                            1. Desenvolvimento de um mecanismo para garantir a diversidade de recomendações de vários domínios.
                                                              1. Um modelo probabilístico multi-relacional usado para facilitar a transferência de conhecimento entre domínios de sistemas CF
                                                                1. O autor observou que não há trabalhos que envolvem as seguintes características de um RS: a) CB + CF, b) Incorporação de representação semântica no conteúdo e; c) Recomendações cross-domain
                                                                2. Transfer Learning for Content-Based Recommender Systems using Tree Matching (Biadsy et al, 2013)
                                                                  1. Active Transfer Learning for Cross-System Recommendation (Zhao et al, 2013)
                                                                    1. TALMUD - Transfer Learning for Multiple Domains (Moreno et al, 2012)
                                                                      1. Twin Bridge Transfer Learning for Sparse Collaborative Filtering (Shi et al, 2013)
                                                                      2. Tutorial on Cross-domain Recommender Systems (Cantador & Cremonesi, 2014)
                                                                        1. Níveis de domínio
                                                                          1. Atributo
                                                                            1. Tipo
                                                                              1. Item
                                                                                1. Sistema
                                                                                2. Tarefas de recomendação
                                                                                  1. Multi-domain
                                                                                    1. Linked-domain
                                                                                      1. Cross-domain
                                                                                      2. Técnicas
                                                                                        1. Linking/aggregating knowledge
                                                                                          1. Merging user preferences
                                                                                            1. Mediating user modeling data
                                                                                              1. Combining recommendations
                                                                                                1. Linking domains
                                                                                                2. Sharing/transferring knowledge
                                                                                                  1. Sharing latents features
                                                                                                    1. Transferring rating patterns
                                                                                                Show full summary Hide full summary

                                                                                                Similar

                                                                                                Pigeon English - apostrophe practice
                                                                                                Bob Read
                                                                                                GCSE ICT Revision
                                                                                                Andrea Leyden
                                                                                                AP Chemistry
                                                                                                Cathal Darby
                                                                                                AS Pure Core 1 Maths (AQA)
                                                                                                jamesmikecampbell
                                                                                                3. The Bolshevik's Seizure of Power
                                                                                                ShreyaDas
                                                                                                ACT Quiz
                                                                                                Brad Hegarty
                                                                                                EBW: Onderwerp 1, Gr7 (KABV)
                                                                                                mvloch
                                                                                                Realidad De Nuestra Identidad Cultural
                                                                                                53831
                                                                                                Mind Maps with GoConqr
                                                                                                croconnor
                                                                                                Computer science quiz
                                                                                                Ryan Barton
                                                                                                2PR101 1.test - 10. část
                                                                                                Nikola Truong