Parábolas

Description

paraboals
MANUEL VALVERDE FRAGA
Mind Map by MANUEL VALVERDE FRAGA, updated more than 1 year ago
MANUEL VALVERDE FRAGA
Created by MANUEL VALVERDE FRAGA almost 6 years ago
43
0

Resource summary

Parábolas
  1. Definición de parábolas: En el ámbito de la matemática, la parábola es el espacio geométrico de los puntos de un plano que tienen equidistancia respecto a un punto fijo y una recta. Este lugar se crea a partir de la acción de un plano que es paralelo a la generatriz y que disecciona un cono circular.
    1. El vértice de una parábola es el punto donde la parábola cruza su eje de simetría. Si el coeficiente del término x 2 es positivo, el vértice será el punto más bajo en la gráfica, el punto en la parte baja de la forma “U”. Si el coeficiente del término x 2 es negativo, el vértice será el punto más alto en la gráfica, el punto en la parte alta de la forma “U”.
      1. La gráfica de una función cuadrática es una parábola. El eje de simetría de una parábola es una recta vertical que divide la parábola en dos mitades congruentes. El eje de simetría siempre pasa a traves del vértice de la parábola . La coordenada en x del vértice es la ecuación del eje de simetría de la parábola.
        1. Venites, M. (2017). definicon de parabolas. en varistyutors. retirado de https://www.varsitytutors.com/hotmath/hotmath_help/spanish/topics/vertex-of-a-parábolas
          1. Lopez, f.(2018) parabolas. en Definicion.s Retirado de https://definicion.de/parabola/
            1. Ecuacion de la parabola.(S.F.).En universo formulas. retirado de https://www.universoformulas.com/matematicas/geometria/ecuacion-parabola/
              1. Tema de parabolas. (s.f.f). en idea. retirado de http://agrega.juntadeandalucia.es/repositorio/07062011/d1/es-an_2011060713_9110157/ODE-5cd4a03e-2e2c-3831-9477-f04725017911/index.html
          2. Consideremos una parábola cuyo eje es el eje de ordenadas, su vértice es el centro de coordenadas V (0, 0) y que está en la parte positiva de las x. En este caso, el foco estará necesariamente en F (p/2,0) . La ecuación de la recta directriz D será x = –p/2. Los radios vectores FP y PM, correspondientes a cualquier punto P de la parábola (que, por definición, son iguales) tendrán la longitud:
            1. Referncias APA
                Show full summary Hide full summary

                Similar

                LAS PARÁBOLAS DE JESÚS
                Dibujos HM
                Elements, Compounds and Mixtures
                silviaod119
                KEE1
                harrym
                Harry Potter Trivia Quiz
                Andrea Leyden
                BIOLOGY B1 4
                x_clairey_x
                Of Mice and Men
                becky_e
                Religious Studies- Matters of life and death
                Emma Samieh-Tucker
                Edexcel Additional Science Biology Topic 2- Life Processes
                hchen8nrd
                History - Treaty of Versailles
                suhhyun98
                French Revolution quiz
                Sarah Egan
                Část 2.
                Gábi Krsková